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PROGRESS REPORT, 1999-2000, Year 3, DAMD17-97-1-7130 COMPUTER-
ASSISTED VISUAL SEARCH/DECISION AIDS AS A TRAINING TOOL FOR
MAMMOGRAPHY.

C.F. NODINE, PI 7/18/2000

(5) INTRODUCTION:

This project focuses on the perceptual training of diagnostic interpretation skills in
mammography which are acquired mainly as a result of experience reading mammograms.
The primary aim of this project is to develop a computer-assisted mammography training
tool that will act as a surrogate mentor in aiding radiologists in making plausible diagnostic
decisions. We propose to provide a computer aid that will interact with the radiologist
immediately after image interpretation by providing systematic feedback about how the
mammogram was searched for abnormalities and what features received prolonged visual
attention indicating potential lesions during scanning. The eye-position parameter, visual
dwell, is used to predict the locations of suspicious lesions on the mammogram
(Krupinski, Nodine, Kundel, 1998; Nodine, Kundel, Mello-Thoms et al., 1999). The
resident is then asked to re-examine the highlighted areas, determine if any abnormal
features are present, and re-evaluate the original diagnostic decision. This re-evaluation of
suspicious regions with visual feedback provides a perceptually-guided basis for a
plausible problem-solving diagnostic solution. We showed in 1990 (Kundel, Nodine,
Krupinski, 1990) that computer-assisted visual search (CAVS) is effective in improving
the detection of lung nodules, and Krupinski (1996) showed that visual dwell predicts the
location of true and false, positive and negative decision outcomes. Our goal is to
determine if CAVS improves the detection and interpretation of breast cancers.

(6) BODY:

(6.1) OBJECTIVES. The primary objective of the work this year was to develop a
working CAVS. This task was delayed because of technical problems interfacing the ASL
4000SU eye-head tracker to the Microsoft WINDOWS 95 environment. We have already
completed Tasks 3, 4 and part of 5 as reported in last year’s progress report. We will
now report on work completed from July 1, 1999 to June 31, 2000 based on the
approved Statement of Work.

(6.2) TECHNICAL OBJECTIVE 1, DEVELOP A COMPUTER-ASSISTED VISUAL
SEARCH (CAVS) SYSTEM AND DIGITAL DISPLAY WORKSTATION.

(6.3) Task 1. Program ASL Model 4000SU and EYEHEAD to monitor the observer's
eye position relative to head motion for digital mammography displays. We have
completed TASK 1. We have programmed the ASL Model 4000 to monitor the observer's
eye position relative to head motion for digital mammography displays. In addition, we
have programmed the workstation to record viewing time, and event times associated with
observer localizations and decisions of breast lesions discovered during visual scanning of




the digital mammogram display. TASK 1 Interface ASL 4000SU System with Display
Workstation, COMPLETE.

(6.4) Task 2. Modify eye-position data collection programs (EYEPOS/EYEDAT) to
accommodate visual-dwell detection algorithm. Integrate detection algorithm with
visual feedback of dwell locations on PC display workstation. This was a difficult
task to complete from a technical standpoint because the ASL 4000SU eye-head tracker
was programmed and operated within a DOS environment and the PC workstation
operated within a WINDOWS 95 environment. However, we obtained a software DLL
driver from ASL and have integrated it into our workstation display successfully. In
addition, we have accomplished the necessary programming to record, analyze and store
eye-head position data and, after initial observer evaluation, feedback by highlighting
mammogram features that receive prolonged dwell. Thus, we now have a working CAVS
system for mammography, and are ready to begin the final phase of testing it with
mammographers. TASK 2 Program to Modify, Analyze and Display Eye Position
Data, COMPLETE.

(6.5) Task 5. Carry out pilot study to determine the effectiveness of the integration
of the CAVS dwell-detection designed to help differentiate true from false positive
and negative decisions in the mammography interpretation task. We have
completed a study using the ASL 4000SU to monitor mammographers’ eye-head position
during mammography interpretation (Nodine, Mello-Thoms, Weinstein et al., 2000, in
preparation). The aim of this study was to determine if retrospectively identified cancers
in mammograms can be reliably recognized in a blinded review. These retrospectively
identified cancers were not reported on initial screening, but were reported subsequently
(average screening interval 14 months). The question that arises is whether these cancers
were initially missed, or were they so subtle that they were impossible to detect? This
question has been addressed before, but never with the benefit of eye position data to
determine if such cancers attract visual attention.

Observers were 4 experienced mammographers, who performed a blinded review on a test
set of 20 retrospectively visible but unreported (U) cancer cases, 10 reported (R) cancer
cases, and 10 cancer-free cases. Two views were digitized and displayed on our high-
resolution digital workstation. The study had two phases: Phase 1 Perception, during
which eye-position was monitored; Phase 2 Interpretation, during which observers
zoomed on regions of interest and localized suspicious lesions. All of these events were
automatically recorded by our new CAVS system.

Eye-position data were analyzed to determined if observers fixated the subtle previous
unreported cancers (U cases), and to compare this performance to that of previously
detected cancers (R cases). Using a 1000 ms visual dwell threshold and an overall decision
“Abnormal” as the criteria for a decision event yielded hypothetical case performance for
Phase 1 Perception. Significantly more TPs and fewer false positives were fixated for R
cases than for U cases. In Phase 2 Interpretation, zooming to magnify suspicious features
on the mammogram decreased FPs for both case types, but only increased TPs for R
cases. We will discuss the implications of these findings below. We are currently writing




up this study for publication. A final draft is expected by the end of July. Thus, we have
tested the CAVS system and are now ready to perform a final test using CAVS with
visual feedback. TASK 5 Pilot Study of CAVS, COMPLETE.

(6.6) IMPLICATIONS OF PILOT STUDY OF RETROSPECTIVELY VISIBLE BUT
UNREPORTED BREAST CANCERS. On blinded review, meaning that observers had
no prior knowledge of the test cases, the performance of experienced mammographers on
retrospectively visible but unreported breast cancer cases (U cases) was significantly
inferior to that of reported breast cancer cases (R cases). Table 1 shows the results.

Table 1
Number of Lesions Identified Either by Eye Fixations in Phase 1, or by Observer

Localization and Interpretation in Phase 2 and Overall Performance as Measured by d' for
Unreported (U) and Reported (R) Cases.

Unreported (U) Cases Reported (R) Cases
True Lesions Non-Lesions True Lesions Non-Lesions
Phase 1 Perception: 01 45 .20 . .60 .30
At Least One Fixation 02 A5 .30 70 .40
Cluster > 1000 ms 03 10 .10 10 .01
o4 S50 .20 .60 .40
Average 30 .20 S50 .28
d'=0.32 d'= 0.58
Phase 2 Decision Making: Ol .65 .20 90 .10
At Least One Lesion 02 .20 .45 .70 .20
Localized and Interpreted 03 30 .15 70 .01
o4 .60 .35 .70 .01
Average 44 29 J5 .08
d'= 041 d'=2.08

Note: Total number for U cases was 20 x 4 observers= 80, and total number for R cases
was 10 x 4 observers= 40. TP hits and FP hits in Phase 1 were defined by eye-fixations
falling on true lesions or non-lesions rather than actual observer reports. There were 5/80=
.06 U true lesions reported Abnormal but not fixated, and 2/40= .05 R true lesions reported
Abnormal but not fixated.

Eye position data indicated that most of the U cancers judged visible in retrospect (by an
experienced mammographer who did not participate as an observer in the study) did not
attract visual attention during the Perceptual Phase. Overall performance for U cases in
terms of fixating a true cancer long enough (>1000 ms) to render an “Abnormal” case
decision was significantly below chance (Chi Square test = 12.8, p<.001). After the
Interpretation Phase during which mammographers were able to examine the cases in
detail with zooming and roving overall performance as measured by the index of
detectability, d’, significantly improved for R cases (d’= 2.08, Analysis of Variance,
F(1,6)= 31.22, p< .01), but not for U cases (d’= .41).




Detailed examination of mammograms by zooming led to the discovery of new true cancer
cases: 31% for U cases; and, 33% for R cases. But, the increase in the discovery of true
cancer U cases was offset by a 30% increase in false positive cases resulting in only a 1%
net gain. This suggests that mammographers were operating at close to chance in picking
up new cancer cases from detailed examination in Phase 2. For R cases, false positive
cases decreased by 73% resulting in a 106% net gain where net gain= (true positives) —
(false positives).

Table 2 shows overall performance as measured by area under the AFROC, curve (which
stands for Alternative Free Response Operating Characteristic) for U and R cases when
the unit of analysis is lesion rather than case. This analysis is more strict because cancers
have to be localized and reported by the mammographers. The results in Table 2 are the
culmination of the Perceptual and Interpretation Phases.

Table 2

A1 Areas Under AFROC for Unreported (U) and Reported (R) Cases Based on
Localization and Interpretation of Lesions in CC and MLO views per Case.

Unreported Cases, U Reported Cases, R
Al sd Al sd
01 .554 (.086) 751 (.080)
02 159 (.067) .656 (.087)
03 .623 (.129) 622 (.117)
o4 497 (.074) .673 (.090)
Average .458 (.089) .675 (.094)

The mean Al areas, which represent overall performance in correctly interpreting
malignant lesions, for U cases was .458 (.089) v. mean Al areas for R cases which was
.676 (.094), and this difference was significant (t-test, (6)= 3.37, p<.05). The Al areas
range from +1 to -1. The scoring of performance in this analysis took into account
localization of lesions in both CC and MLO images for each case. Thus of the 126 lesions
reported as malignant for U cases only 41% (52/126) were correctly localized; for R
cases, 104 lesions were reported as malignant and 63% (65/104) were correctly localized.

The expected operating points on AFROC curves are plotted for each observer in Figure
1. These points represent the predicted intersections of true positives (y-axis) and false
positives (x-axis) using maximum-likelihood estimates. The 3 estimated operating points
for each observer in Figure 1 show how performance, as measured by AFROC area,
increases as a function of cumulative decision confidence using a 3-point scale of low,
medium and high.




Figure 1. AFROC Estimated Operating Points for 4 Mammographers.
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Performance of all 4 mammographers was higher for previously detected lesions (R cases)
than for previously missed lesions (U cases), and all but mammographer no. 3 retained
their rank order between the two sets of cases. Observers 3 and 4 were operating close to
chance at lowest decision confidence for previously missed lesions (U cases). This would
be indicated by a 0 true positive fraction on the plot in Figure 1.

The pattern of performance yielding such a small net gain, even from detailed evaluation
by zooming for U cases, suggests that most of the true cancer cases were discovered
during initial scanning in Phase 1. However, for R cases zooming definitely did benefit
performance with a solid net gain in new true cancer cases detected in Phase 2.

Our findings suggest that the Global Impression plays a major role in flagging image
perturbations that are recognized as deviating from normal anatomy (Nodine, Mello-
Thoms, 2000). A recent model that we have proposed (see Figure 2) shows the
relationship between Global Impression and Focal Analysis.




Figure 2 A Perceptual Model of the Radiology Task.
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(7) KEY RESEARCH ACCOMPLISHMENTS:
Our research studies in 1999-2000 have led to three key findings:

1. For subtle cancer cases where the cancer was not detected at first screening, the Global
Impression that initiates image perception plays a major role in guiding perceptual
analysis during visual search and interpretation of mammograms.

2. Detailed examination of digital mammograms with a zoom magnification tool is used by
experienced mammographers primarily to confirm initial perceptions flagged during
Global Impression rather than to discover new abnormalities.

3. Retrospective analysis of missed cancer cases biases mammographers’ judgments and
lead to illogical conclusions in deciding whether or not to report a lesion as malignant.

(8) REPORTABLE OUTCOMES:

In addition to the work completed and in progress as discussed above, we have
completed the following articles:

1. "How Experience and Training Influence Mammography Expertise", ACADEMIC
RADIOLOGY, 1999; 6: 575-585. (see Nodine, Kundel, Mello-Thoms et al., 1999, in
press, Appendix 1).
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2. "Do Subtle Cancers Attract Visual Attention During Initial Impression?" was |
presented at Medical Imaging 2000, SPIE PROCEEDINGS 2000; 3981:156-159 (see
Nodine, Mello-Thoms, Kundel, et al. 2000, Appendix 2).

3. "A Perceptually Tempered Display for Digital Mammograms", RADIOGRAPHICS,
1999; 19: 1313- 1318 (see Kundel, Weinstein, Conant, Toto, Nodine, 1999, in press,
Appendix 3).

4. " Image Structure and Perceptual Errors in Mammogram Reading: A Pilot Study” was
presented at Medical Imaging 2000, SPIE PROCEEDINGS 2000; 3981:170-173. (see
Mello-Thoms, Dunn, Nodine et al., 2000, Appendix 4).

5. “An Unobtrusive Method for Monitoring Visual Attention During Mammogram
Reading” was presented at Medical Imaging 2000, SPIE PROCEEDINGS 2000
3981:160-163. (see Mello-Thoms, Nodine, Weinstein et al., 2000, Appendix 5).

6. "The Nature of Expertise in Radiology", Chapter 19 in the Handbook of Medical
Imaging, Volume 1. Physics and Psychophysics, Edited by J. Beutel, H.L. Kundel, R. L.
Van Metter Bellingham, WA: SPIE Press, 2000; 859-894. (see Nodine, Mello-Thoms,
2000, Appendix 6)

We are currently working on three papers:

1. "A Model for Information Acquition in Reading Medical Images: Chest Radiographs
vs. Mammograms" Mello-Thoms, Dunn, Nodine et al, 2000, in preparation.

2. “Blinded Review of Retrospectively Visible But Unreported Breast Cancers: An Eye-
Position Analysis” Nodine, Mello-Thoms, Weinstein et al., 2000, in preparation.

3. “An analysis of perceptual errors in reading mammograms using quasi-local image
frequency spectra. Mello-Thoms, Dunn, Nodine CF et al., 2000, in preparation.

(9) CONCLUSIONS

The primary goal of the project is to develop a mammography training tool that will
improve perceptual and cognitive skills of observers leading to mammographic expertise.

Prerequisites to this goal are an understanding of: (a) how mammographers are trained, (b)
what skills are required to carry out the task of detecting, classifying and diagnosing
abnormalities in mammograms, and (c) the effectiveness of current mammography training
measured by evaluating the performance of residents using a test-set of mammograms
representing various abnormalities. We have examined these three questions and reported
the results in two articles (Nodine, Kundel, Mello-Thoms, 1999; Nodine, Mello-Thoms,
2000).
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We have shown that the amount of experience reading mammogram cases with a mentor
(defined as deliberate practice) has significant impact on overall diagnostic performance.
The residents that we studied at the University of Pennsylvania received an average of
645 case-reading experiences which from our regression analysis leads to a performance
prediction that is well below acceptable clinical standards. This brings us to the question
of what skills need to be improved, and how can this be accomplished.

Our research has focused on perceptual and decision-making skills in mammography. We
have used eye-position recording to shed light on the role of visual search in diagnostic
performance. Visual search skills translate into rapid image-perception assessment which
leads to fast, accurate decision making as indicated by decision-time analyses. We have
called this the speed-accuracy relationship.

Finally, when we come to the question of how can perceptual and decision-making skills
be improved? The answer that our research seems to be saying is: "Practice Makes
Perfect”. This is a deceptively simple answer. During their medical training, radiologists
have to learn much more than simply how to read mammograms, and there is not enough
time in the radiology residency program to make expert mammographers. Rather, what
may be needed is a more effective way to train residents during their clinical residency in
mammography. We need to supplement apprenticeship mentoring by expert computer
systems. Expert computer systems can provide systematic feedback tailored specifically
to each resident's level of training and experience. We propose to use CAVS, which can be
"tuned" to provide systematic feedback about regions of the mammogram deemed
"suspicious" based on analysis of eye-position dwell times. Prolonged visual dwells will
be used to localize image regions for re-evaluation and decision making. Thus, CAVS may
hold the key to more effective mammography training.
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How Experience and Training Influence

Mammography Expertise’

Calvin F. Nodine, PhD, Harold L. Kundel, MD, Claudia Mello-Thoms, MSEE
Susan P. Weinstein, MD, Susan G. Orel, MD, Daniel C. Sullivan, MD, Emily F. Conant, MD

Rationale and Objectives. The authors evaluated the in-
fluence of perceptual and cognitive skills in mammogra-
phy detection and interpretation by testing three groups
representing different levels of mammography expertise
in terms of experience, training, and talent with a mam-
mography screening-diagnostic task.

Materials and Methods. One hundred fifty mammograms,
composed of unilateral cranial-caudal and mediolateral ob-
lique views, were displayed in pairs on a digital worksta-
tion to 19 radiology residents, three experienced mammog-
raphers, and nine mammography technologists. One-third
of the mammograms showed malignant lesions; two-thirds
were malignancy-free. Observers interacted with the dis-
play to indicate whether each image contained no malig-
nant lesions or suspicious lesions indicating malignancy.
Decision time was measured as the lesions were localized,
classified, and rated for decision confidence.

Results. Compared with performance of experts, alterna-
tive free response operating characteristic performance for
residents was significantly lower and equivalent to that of
technologists. Analysis of overall performance showed
that, as level of expertise decreased, false-positive results
exerted a greater effect on overall decision accuracy over
- the time course of image perception. This defines the de-
cision speed-accuracy relationship that characterizes
mammography expertise.

Conclusion. Differences in resident performance resulted
primarily from lack of perceptual-learning experience dur-
ing mammography training, which limited object recogni-
tion skills and made it difficult to determine differences
between malignant lesions, benign lesions, and normal
image perturbations. A proposed solution is systematic
mentor-guided training that links image perception to
feedback about the reasons underlying decision making.

Key Words. Breast radiography; education; radiology
and radiologists.

One of the outstanding characteristics of an expert in
radiology is the speed and accuracy with which he or
she decides whether an abnormality is present on a medi-
cal image (1-3). Acquiring expertise in radiology re-
quires specialized training, experience, and some degree
of talent. How much and what kind of training and experi-
ence has been the subject of an organized body of re-
search that has emerged from the field of artificial intelli-
gence (4,5). In this study, we evaluated the influence of
perceptual and cognitive skills in mammography detec-
tion and interpretation by comparing the performance
of experienced radiologists (mammographers), radiolog
residents, and mammography technologists. The study
focused on the performance of the radiology residents,
who were receiving training and mentor-guided experi-
ences during mammography rotations that presumably
provided a basis for mammography expertise.

It is difficult to find a yardstick to quantify the experi-
ence required to achieve expertise in mammography, but
one could consider a reading on each case that results in a
diagnostic report as a learning-experience trial. This mea-
sure of experience ignores immediate feedback, which is
important for perceptual learning but is typically absent in
clinical practice. In the context of medicine, training con-
sists of mentored experience in which the resident reads
medical images and then reviews them with the mentor.

Acad Radiol 1999; 6:575-585

1 From the Department of Radiology, 308 Stemmler Hall, 36th & Hamilton
Walk, University of Pennsylvania School of Medicine, Philadelphia, PA
19104-6086 (C.F.N., H.LK., CM.T., 8.P.W, 8.G.0., E.F.C.), and the Na-
tional Cancer Institute, Rockville, Md (D.C.S.). Received March 19, 1999;
revision requested May 5; revision received May 21; accepted May 21.
C.F.N. supported in part by USAMRMC grant DAMD17-97-1-7103. Ad-
dress reprint requests to C.F.N.
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This training is designed to build feedback into the mentor-
guided reading experience, but feedback is neither immedi-
ate nor systematic once the resident enters practice. If, for
the moment, each read-and-reported case is considered an
experience trial, regardless of whether it has been accompa-
nied by feedback, expertise in mammography translates
roughly into an average case reading experience equivalent
of about 10,000 cases over a period of 3 years (6). This
amount of experience compares favorably with estimates
of the number of games a chess player plays to reach grand
master status (7). The average radiology resident’s case
reading experience in a mammography rotation over 4
years is about 650 cases, of which only a dozen or fewer
may be actual cancers. This means that extensive reading
experience after residency is required to reach proficiency
as a mammographer. Thus, the amount of experience that

a radiology resident receives in training is literally a drop
in the bucket.

Visual search is important for detecting lesions in mam-
mograms, but in experts this search skill seems to be spe-
cifically tuned for detecting breast lesions embedded in
mammograms and does not transfer to similar search tasks
in which hidden words and figures are embedded in pic-
torial scenes (8). It may not even effectively transfer to
reading radiographs of areas outside of the breast. Effi-
cient search skills make expert mammographers fast, accu-
rate recognizers, classifiers, and decision makers. Eye-posi-
tion studies have shown that experts are faster at detecting
lesions in chest or breast x-ray images than are less ex-
pert observers and that visual-gaze duration (or dwell),
which is assumed to reflect visual information process-
ing, is related to decision outcome (6,9). In general, ob-
servers dwell longest on the areas in which they report
abnormalities, whether their results are true-positive or
false-positive. Areas considered negative receive the short-
est dwell times. False-negative decisions are the excep-
tion. In many instances, observers dwell almost as long
on areas containing abnormalities that they report as nega-
tive as they do on similar areas that they report as posi-
tive, suggesting that they consider these areas to be trouble-
some even though they reported them as negative.

The fact that cumulative dwell time predicts misses is
important in the context of the present study, because it
reflects the recognition and decision making that lead up to
a diagnostic outcome in much the same way that decision
time reflects the gathering of information that leads up to a
localization decision. However, visuospatial localization of
regions of interest obtained with eye-position recording
cannot be derived from decision-time data. The analysis of
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visual dwell and its relation to information processing lead-
ing to a decision outcome suggests that chronometric analy-
sis of the relationship between decision times and decision
outcomes may compliment visual dwell data. Experimental
psychology has studied reaction time, which is closely re-

lated to decision time in the present study, because it “‘can

help one trace the time course of information processing in

the human nervous system” (10).

If the goal of mentor-guided experience during resident
training is to provide the basis for expertise in mammogra-
phy, then an important question is: What kind of skills are
acquired? Previous research has helped to identify three
general areas in which experts skills operate: (@) visual
search, (b) pattern and object recognition, and (c) decision
making. Because a key characteristic of mammography ex-
pertise is the speed-accuracy relationship in decision out-
come, the present study focused on how decision making
changes as a function of training and experience by com-
paring groups of observers with different dimensions of
speed and accuracy. This comparison entails measuring
decision times of observers during mammographic inter-
pretation on a digital workstation and analyzing their deci-
sions by comparing them against a truth table.

Three questions were explored. First, how does perfor-
mance change as a function of mentor-guided reading ex-
perience? Second, how does decision outcome relate to de-
cision time for each decision event during image percep-
tion? Finally, what is the likelihood of true versus false
decision outcomes over the time course of image percep-
tion and decision making? This last question was initially
addressed by Christensen et al (11), who were interested in
the relationship between what they called “search time” and
“perception” in the interpretation of subtle abnormalities
and nonpulmonary lesions in chest radiographs. Search time
was defined as how long it took to identify an abnormali-
ty. Given the possibility of multiple abnormalities per im-
age, there could be multiple decisions per image. Each
decision was timed and counted as a decision event. Maxi-
mum search time per image was 4 minutes, but most deci-
sions took 1.84-2.68 minutes on average. To compensate
for the efficiency associated with faster search times, the ac-
tual search time was adjusted by covarying it with the num-
ber of decision events within the maximum allotted search
time per image. So experienced readers (faculty radiolo-
gists) made statistically significantly more decisions in less
time than inexperienced readers (radiology residents). By
mapping the search times of decision events against a truth
table, they were able to plot the time course of true- and
false-positive decision outcomes. The analysis of time-
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perception data revealed that true-positive results outpaced

false-positive results throughout the time course of viewing
for experienced readers, whereas false-positive results over-
took true-positive results during the time course of viewing

for inexperienced readers.

MATERIALS AND METHODS

The mammography test set consisted of craniocaudal
(CC) and mediolateral oblique (MLO) paired views from
78 unilateral mammogram cases, for a total of 156 im-
ages. The images were digitized (Lumiscan model 100
digitizer; Lumysis, Sunnyvale, Calif) by using a 100-pm
spot size. The mammograms were of a single breast and
were selected by two mammographers (S.G.O., D.C.S.)
from a database of mammography cases taken from the
archive of the Hospital of the University of Pennsylvania.
These mammographers were later used in the study, but
over 2 years had elapsed prior to their testing, and each
mammographer contributed only about half of the mam-
mograms to the test set. The mammograms were assembled
from cases classified by mammography assessment as
normal for at least 2 years, cases classified by mammog-
raphy assessment as benign and proved by biopsy results
to be benign, and cases classified by mammography as-
sessment as malignant and proved by biopsy results to be
malignant. The test set contained 25 cases with 15 in-
stances of malignant masses and 14 instances of malig-
nant calcifications shown on both views, one instance of
an architectural distortion underlying a malignancy on
both views of one breast, and one instance of a single
malignant calcification present on only one view. It also
contained 24 cases with 12 instances of benign masses
and 12 instances of benign calcifications shown on both
views and 26 cases considered to be normal. In addition,
three practice cases were included: two showing lesions
on both views and one lesion-free normal case. For all
cases, the two mammographers (S.G.O., D.C.S.) selected
mammograms containing subtle benign and malignant le-
sions. Many of the normal mammograms contained am-
biguous image perturbations and thus were considered
“difficult normals” by the two mammographers.

The test set was displayed on a single 19-inch, gray-
scale monitor (GMA 201, Tektronix, Beaverton, Ore) inter-
faced to a Sun Sparc 10 computer (Sun Microsystems,
Sunnyvale, Calif). At the time of testing, the brightness
of the monitor was 127 cd/m?. This brightness level is
low for current state-of-the-art mammography displays
and may have led to higher than normal error rates, at
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least for the inexperienced viewers. Each display con-
sisted of two views of a single breast displayed in the
center of the monitor at 2,048 x 2,048-pixel resolution.
The gray scale was adjusted for each image by the ex-
perimenters (C.F.N., H.L.K.) to a setting that covered
the gray-scale range of the breast-only portion of the
image. The CC view was shown on the left half of the
display screen and the MLO on the right half of the dis-
play screen. This is not a typical format for reading mam-
mograms, but we were interested in determining how
well observers with different levels of expertise could
locate lesions in two views.

Three groups of observers representing different levels
of mammography training and reading experience partici-
pated: staff mammographers with more than 5 years’ ex-
perience as dedicated breast imagers (n = 3); 2nd-, 3rd-,
and 4th-year radiology residents undergoing a mammogra-
phy rotation (n = 19); and radiology technologists with
1-9 years’ experience in mammographic imaging, but no
reading experience (n = 9).

The procedure for testing observers was similar to the
interruption technique used by Berbaum et al (12) to obtain
response times during visual search. However, the observ-
ers viewed the images on a workstation. Lesion identifi-
cation and decision confidence was entered by “clicking”
with a mouse-driven pointer on a menu called up at the
time that a lesion was localized. The time from the onset
of the display until a decision was made, referred to as
decision time, was automatically recorded. The observers
were told that they were being tested on their ability to
screen for malignancy in a two-view mammographic dis-
play of a single breast. If a malignancy was detected, they
were to move the cursor to the lesion location and click on
it. This action recorded the lesion location and called up a
special menu from which they could classify the lesion as
a mass, calcification, or architectural distortion and could
rate their level of suspicion of malignancy as definitely
malignant, highly suspicious for malignancy, moderately
suspicious for malignancy, or low suspicion of malig-
nancy. If the observer decided that the two views dis-
played were free of malignancy, he or she clicked “Re-
turn to Routine Screening” on the general menu. If the
observer detected a benign lesion, he or she was instructed
to treat the mammogram as lesion-free and click “Return
to Routine Screening.” In addition to these instructions,
observers were told to localize malignant lesions on both
views, if possible, and to point to the center of masses or
a group of calcifications. After three practice trials with
the experimenter, to familiarize themselves with the
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Figure 1. Diagram shows the relationship
between image-display presentation and de-
cision events signalled by the observer's
clicking the location of a breast lesion on an
image with the mouse. Decision time was

Image Pair

On Off

measured from the onset of the image dis- Localization Event

play to the onset of a decision event. Perfor-

mance was measured for the task of read- Time

ing a pair of breast images consisting of CC
and mediolateral oblique MLO views. There-
fore, more than one decision event was typi-
cally timed during each image-display pre-
sentation. Offset of the display occurred
when the observer clicked on “Next Image.”

Decision Time to
First Decision

Decision Time to
Second Decision

workstation cursor operations, observers were left to view
the 75-case test set on their own. Viewing time per case
was unlimited. Decision times were recorded each time

a lesion was localized by cursor control, but the observ-
ers were not told that their responses were being timed.
Because multiple responses were made per two-view im-
age pair, each localization event signaled the occurrence
and time of a decision, indicating the presence of a true
or false malignant lesion. Figure 1 shows how these events
were translated into decision-time measures. For our analy-
sis of decision times, we used the method of survival analy-
sis to generate the cumulative time course of decision out-
comes during the time course of viewing. Survival analysis
has the advantage of adjusting individual decision times for
decision outcomes per case by the total decision-making
time required for a case. Thus, our analysis of decision
times focused on the cumulative number of decision events
per group over the time course of viewing. This is similar to
the Christensen et al (11) analysis, which focused on the cu-
mulative number of decision events per group over the time
course of viewing 100 chest radiographs.

Analysis of cursor events for localizing, classifying, and
rating lesions was accomplished by comparing the observ-
ers’ decisions against a truth table. The truth table was gen-
erated from a combination of mammographic assessment by
two of the authors (S5.G.O., D.C.S.) and biopsy information
on each case. Because all pairs of positive images contained
at least two lesions, alternative free response operating char-
acteristic (AFROC) analysis was carried out, treating the
pair of positive images as the unit of analysis. This was con-
sistent with the instructions for the task and provided evi-
dence on how well observers with different levels of mam-
mography expertise coordinated lesion localization in a sec-
ond view, given lesion detection in the first view.

578

Case Viewing Time

For the AFROC analysis, 30 pairs of malignant lesions
were identified as appearing on 25 image pairs. These 60
lesions were counted in the malignant-positive category.
The 24 image pairs containing benign lesions plus the le-
sion-free images (total of 50 image pairs) made up the non-
malignant category. In the AFROC analysis, we counted all
correctly localized lesions within £0.41 cm of the true lo-
cation on the malignant two-view image pairs (2 standard
deviations of mean accuracy of 0.28 cm for mammogra-
phers) and counted only the highest-rated false-positive
results for the 50 nonmalignant image pairs (equivalent
to counting false-positive images; see [13]). It should be
noted that this performance criterion ignores classifica-
tion information that we thought unreasonably stretched
the assumptions underlying the two-alternative force choice
experimental framework. Basically, the AFROC was de-
signed to measure detection performance. However, be-
cause of the importance of the classification decision in
mammography, we will provide a separate analysis of the
classification data to show how this performance crite-
rion is influenced by the level of expertise.

RESULTS

Overall Performance

Overall detection and localization of breast lesions
was assessed as a function of level of expertise. We com-
pared Al, the area under the AFROC curve, for mam-
mographers, residents, and radiology technologists. The
AFROC plots the fraction of actual target locations re-
ported (true-positive decisions) against the fraction of
images with any false-positive decisions. In our case, we
plotted only the highest-rated false-positive decisions on
normal or benign images. Figure 2 shows AFROC curves
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Figure 2. AFROC curves show mean decision accuracy for ex-
perienced mammographers (n = 3), radiology residents (n = 19),
and mammographic technologists (n = 9). For this analysis, it
was assumed that there were 60 malignant lesions on 25 image
pairs (CC and MLO views) and 50 malignancy-free images. False-
positive results were counted only for malignancy-free images.
A computer program called ROCFIT was used to produce an
ROC curve after averaging over the confidence intervals for
each group of observers. (ROCFIT is part of a set of curve-fit-
ting and estimation programs called ROCKIT, which is available
at hitp://www-radiology.uchicago.edu/sections by clicking on
“Kurt Rossman Laboratory” and then on “ROC Analysis.”)

for the three groups. The average area per observer de-
rived from analysis of variance of Al values was 0.840
(standard deviation, 0.039) for mammographers, 0.653
(0.058) for residents, and 0.592 (0.062) for technologists.
All of these values are above chance performance, which
for the AFROC is 0.000. Analysis of variance of Al val-
ues indicated, not surprisingly, that the overall perfor-
mance accuracy of mammographers was statistically sig-
nificantly better than that of either residents or technolo-
gists, who did not differ from one another (P < .01, Scheffe
test). By contrasting performance for these groups, which
represented different levels of training and experience, we
hoped to gain insights into the nature of mammography ex-
pertise.

Relation of Case Reading Experience to
Development of Mammography Expertise

To provide a clearer picture of how the three groups
differ in their experience at reading mammograms, we
obtained data on the number of mammographic reports

.6
Al
<
41 experience
2 r
0 T ; : T
0 1 2 3 4 5

Log Case Readings

Figure 3. A regression analysis of overall performance measured
as A1 as a function of log™ number of cases read over a 3-year
period by three experienced mammographers and 19 radiology
residents undergoing clinical mammography rotation. When case
readings are zero, the regression line intercepts the y axis at Al =
0.393, which is close to chance performance. With mentor-guided
case reading training and experience, A1 performance increases.
The numbers and letters within the figure indicate the level of train-
ing of the observers: 7 = 1st- and 2nd-year residents, 3 = 3rd- and
4th-year residents, f= fellows, and m = mammographers.

generated by the residents and mammographers. The 19
radiology residents who were part of the study repre-
sented mainly 3rd-year (n = 7) and 4th-year (n = 8) resi-
dents, plus four fellows who had mammography reading
experience varying from 10 to 2,465 cases over a 3-year
interval. Over the same period, the three mammographers
read 9,459 to 12,145 cases. The relationship between Al
and log number of cases read is shown in Figure 3 for all
observers. Figure 3 shows a significant linear-regression
fit of the data (R? = .667) with a positive slope, suggest-
ing that reading skill, as reflected by Al performance,
increases directly with log case reading experience (F
[1,22] = 44.15; P <. 0001). The regression line intercepts
the y axis at Al = 0.293, which implies close to chance
performance with zero reading experience. A log scale
was used to represent the effects of case reading experi-
ence because several investigators have suggested the rela-
tionship between practice and learning is best expressed by
a power function (14). The range of case reading experi-
ence in Figure 3 was from 1.0 log case reading to 4.1 log
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case readings, or from about 10 to 12,000 cases. Two resi-
dents at the beginning of mammography training with little
case reading experience performed at an Al of about 0.500.
The fact that their performance is above chance at the be-
ginning of the mammography rotation can be attributed to
their talent and their subspecialty training in other areas of
radiology. The training levels of the observers are indicated
by the numbers or letters associated with the data points.
Overall performance increases in an orderly progression
with training level.

Identification of Lesions in Two Views

Our hypothesis was that one aspect of performance that
might differentiate levels of expertise was how successful
observers were at identifying pairs of lesions in a two-view
(CC and MLO) display. This hypothesis was based on the
assumption that when mammography experts detect a lesion
in one view they look for confirmation in a different view.
Mammographers talk about using projective geometry prin-
ciples to predict from a detected lesion to a likely “plane of
interest” in which to search for the corresponding “depth”
lesion projection. If a detected lesion can be paired in a sec-
ond view, this provides confirmation that it is a real target.
To follow up on this, we analyzed malignant lesions (true-
positive decisions) and benign lesions (false-positive deci-
sions) that appeared on CC and MLO views per case by re-
ferring to the truth table. The identification of paired local-
izations on lesion-free areas of images (false-positive deci-
sions) was more speculative, because these were imaginary.
To account for paired localizations on lesion-free areas of
images (false-positive decisions), we identified sequential
decisions— from CC to MLO view or vice versa—that
were classified as being malignant and of the same type
(eg, mass, calcifications, or architectural distortion). Consis-
tent with the pattern of results in the AFROC analysis, the
identification of paired lesions was related to level of exper-
tise. Proportionally more paired lesions were reported and
correctly classified by the mammographers than by the resi-
dents or technologists. The proportion of correctly paired-
lesions was 0.82, 0.56, and 0.50 for mammographers, resi-
dents, and technologists, respectively. Proportionally fewer
lesions were seen and reported correctly in only one view
by all groups, and the corresponding proportions were
much lower—0.14, 0.14, and 0.12, for mammographers,
residents, and technologists, respectively.

Decision Time and Decision Outcome
The regression plot in Figure 3 shows the relationship
between performance and case reading experience. We

580

hypothesized that the decision speed—accuracy relation-
ship, which is a hallmark of expertise, should accompany
this improvement in performance, so we looked at deci-
sion times as a function of decision outcome, again tak-
ing into account that observers were interpreting an im-
age pair containing CC and MLO views and thus possibly
making two or more decisions per case. To identify the
sequencing of decisions per case, the paired decisions
were broken down into those occurring in the CC view
on the left side of the display and the MLO view on the
right side of the display. For these paired decisions, deci-
sion times to the first decision were inversely related to
level of expertise, with mammographers significantly
faster than residents (P <. 01, Scheffe test) and residents
significantly faster than the technologists (P < .0001,
Scheffe test). For mammographers compared with resi-
dents, 32% more of their initial responses were true-posi-
tive, and these initial responses were reported faster than
those of residents. Mean decision time for the first cor-
rect decision per pair was 15.66 seconds versus 21.56
seconds (z [376] = 3.91; P <.001). Technologists detected
fewer true-positive results and took even longer to decide
(28.08 seconds). Decision time was also inversely related
to level of expertise in a similar pattern for classification
of localized lesions. Mammographers correctly classified
38% more lesions and did so faster than residents (P <
.05) and technologists (P < .001). Mean decision time for
mammographers was 16.51 seconds for classifying masses
and 19.77 seconds for classifying calcifications. Both of
these findings support the decision speed—accuracy rela-
tionship associated with expertise.

Finally, to provide some perspective on how true-posi-
tive results related to false-negative results, we looked at
decision times when all lesions were completely missed on
images containing malignant lesions. In this case, total im-
age duration was assigned as the decision time. This result
might be considered a “clean” miss in that no lesion was
reported, even though a lesion was present during the en-
tire time that the image was examined. Of 579 total false-
negative decisions, 51% were clean misses. Mean decision
times differed little for the clean-miss false-negative cat-
egory, as they ranged from 38 to 46 seconds. However,
standard deviations of the mean decision times ranged
from 4.6 seconds for mammographers to 41.6 and 52.5
seconds for residents and technologists, respectively. These
values indicated that the latter two groups had considerable
indecision about not making a positive report after examin-
ing two views of an image containing a truly malignant le-
sion. The range of mean decision times for clean misses
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was longer than that of any other decision outcome catego-
ries and seems to complement the finding obtained from
monitoring eye position of prolonged visual dwell for false-
negative decisions. Observers spent a longer time deciding
to call a positive case negative. Overall, clean-miss false-
negative decisions took significantly longer than true-nega-
tive decisions (r [864] = 4.22; P <.001). Of course, we can-
not confirm that the true lesions were actually scrutinized
from the decision time data, but the long decision times and
wide variances suggest much uncertainty surrounding deci-
sion making.

Relationship of Decision Time to Use of
Confidence Ratings

The similarity of the relationship of decision outcome to
decision time for mammographers and residents suggests
that they may be using similar underlying detection and de-
cision strategies. One measure that reflects underlying deci-
sion strategy is how observers used the confidence rat-
ings in making decisions. It is reasonable to assume that
the more sure observers are that they have detected a lesion,
the faster they are at making a decision. Figure 4 shows the

Moderate suspicion of malignancy
High suspicion of malignancy J&

Residents

Definitely malignant-free |
Low supicion of malignancy E

L6 I O O T

Definitelyé" malignant JJi§

H

Technologists

Figure 4. Decision time as a function of decision-confidence ratings for mammogra-
phers, residents, and technologists. A confidence rating of 5 indicated the lesion was
definitely malignant; 4, highly suspicious for malignancy; 3, moderately suspicious for
malignancy; 2, low suspicion of malignancy; and 1, definitely malignant-free.

relationships between decision time and use of confidence
ratings for the three levels of expertise. The general pattern
for the mammographers and residents was that decision
times were inversely related to the confidence rating. The
Jongest decision times were for definitely lesion-free images
(rating = 1), and the shortest decision times were for defi-
nitely malignant image locations (rating = 5). This pattern
suggests that both groups had a similar perceptual thresh-
olding basis for the decision, which is an important factor
in developing a decision-making strategy. The pattern for
technologists showed virtually no relationship between de-
cision time and use of confidence ratings. Only confi-
dence 1 ratings were prolonged. No evidence showed that
decision times were faster when technologists were more
confident that a malignant lesion was present on an image.

Time Course of Decision Outcomes

So far, two interesting generalizations come out of the
decision time analysis. First, the decision speed-accuracy
relationship was found to be related to level of expertise.
Figure 5 summarizes the decision speed-accuracy relation-
ship expressed by d’ (cumulative) as a function of viewing
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time for mammographers, residents, and technologists.
Cumulative values for true-positive and false-positive de-
cisions to both normal and benign images on a per case
basis (paired decisions) as a function of decision time
were obtained from survival analysis. These values were
then transformed using the formula d’ = z (true-positive
decisions/30) — z (false-positive decisions)/50, where z can
be interpreted as a deviate of the unit normal curve. This
formula can be thought of as correcting the true-positive
fraction by the false-positive fraction. Decision accuracy
consists of detecting perturbations in images, testing them
for signs of malignancy, and correctly classifying them as
masses, architectural distortions, or calcifications. This
complex decision requires discriminating malignant from
benign lesions, and malignant from normal anatomic vari-
ants in the breast image. Decision accuracy can be ex-
pressed as Al, the area under the AFROC curve, or as d’,
the index of detectability derived from the true-positive
fraction and the false-positive fraction at a specific deci-
sion threshold, as shown in Figure 5. Looking at perfor-
mance in this way shows clear differences as a function
of level of expertise.

Second, decision times were longer for false than for
true decision outcomes. To consider whether these false
decisions tended to occur early or late in the time course
of image perception, we looked at both paired and single
decisions. A paired decision is one in which the observer
sequentially localized a suspected lesion (true or false) on
both CC and MLO views. Figure 6 shows the mean num-
ber of paired true-positive decisions and paired false-posi-
tive decisions for normal regions of the images and benign
lesions for mammographers, residents, and technologists
as a function of viewing time per case. Figure 7 shows
the same plot for single decisions, as contrasted with
paired decisions. The most striking feature of Figure 6
is the technologists’ high rate of false-positive results for
normal regions in relation to the rate of their true-positive
results, for paired decisions. In Figure 7, it is the high rate
of false-positive results for normal regions for all groups
for single decisions.

These plots show that for mammographers the rate of
true-positive decisions for normal regions is faster than
the rate for false-positive decisions, but false-positive de-
cisions for normal regions continue to plague performance
throughout the time course of viewing. False-positive de-
cisions for benign lesions drop out relatively early; thus,
overall performance continuously improves with decision
time until about 60 seconds. Perhaps our mammographers
should have considered stopping at this point, because
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Figure 5. Speed-accuracy relationship indicated by d”’ as a func-
tion of decision time for mammographers, residents, and technolo-
gists. Overall performance measured by d’, which is the normal
deviate (2) of true-positive results minus the false-positive resuits,
increased for mammographers and to a lesser extent for residents.
Overall performance decreased below chance (d’ = 0) for tech-
nologists, which means that false-positive results outnumbered
true-positive results.

false-positive decisions for normal regions increased faster
than true-positive decisions. The rate of true-positive deci-
sions is slower for residents because of continuous competi-
tion from false-positive decisions for normal regions up to
60 seconds. As with mammographers, the false-positive
decisions for benign regions peak earlier. The technologists
show a decrease in overall performance over time because
they continued to make more false-positive decisions for
normal regions than true-positive decisions.

DISCUSSION

Understanding the Nature of Expertise

The goal of the present study was to understand better
the nature of expertise in mammography. Expertise in mam-
mography, as we have defined it here, refers to diagnostic
performance skills that enable the observer to localize a
breast lesion and correctly decide that it is or is not ma-
lignant on the basis of two views. Admittedly, our task was
somewhat artificial in the sense that we mixed lesion detec-
tion, which is the focus of mammography screening, with
diagnostic interpretation, which is the focus of diagnostic
follow-up. The next step is to break the task apart and do a
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Figure 6. Cumulative mean numbers of paired decisions per case as a function of the decision time course of viewing for true-positive
(TP) decision outcomes, false-positive decision outcomes on normal images (FPN), and false-positive decision outcomes on images
containing benign lesions (FPB) for (a) mammographers, (b) residents, and (c) technologists. Paired decisions were measured. Of the
malign cases, all but one contained lesions in both CC and MLO views. As this figure indicates, within 60 seconds, the mammographers
had localized 23 (92%) of 25 paired true lesions.

30—t L L s e <« Figure 7. Cumulative mean number of single decisions as a func-

4 L tion of the decision time course of viewing for true-positive (TP) de-
1 F cision outcomes, false-positive decision outcomes on normal images
1 FPN-T|  (FPN), and false-positive decision outcomes on images containing
benign lesions (FPB) for mammographers (M), residents (A), and

25 technologists (7).

two-part test, which will come closer to the American Col-
lege of Radiology Breast Imaging Reporting and Data Sys-
tem format. Moreover, even though the diagnostic skills
that we have studied are an essential part of mammography
diagnosis, the study is limited, as only CC and MLO views
were shown with no capability for prior studies, additional
views, or magnification views. Additional special mammo-
graphic images, such as spot compression or magnification
views, and breast ultrasound imaging, both of which are im-
portant parts of mammography expertise, were not em-
ployed in the present study. On the basis of the information
these modalities provide, the mammographer may decide
that the finding is normal, benign, or probably benign but
recommend short-term follow-up or a biopsy.

Mean Number of Decisions
- N
($3] o

-
(@]

0 Why Are Experts Faster and More Accurate?
0 20 40 60 80 100 120 140 Our analysis has related Al and d’, measures of over-
Time (sec) all performance, to decision time to shed light on basic
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perceptual and decision-making skills. Differences in speed
and accuracy between mammographers and residents seem
to be related to the experience required to gain expertise,
as shown in Figure 3. This suggests that experts are per-
ceptually more sensitive in recognizing lesions than are
those with less expertise because the experts have read
more mammogram cases, seen more lesions, and differ-
entiated more lesions into malignant and benign catego-
ries. In practical terms, this means that through massive
amounts of experience experts became perceptually tuned
to recognizing familiar common breast structures and de-
tecting odd or novel variations in them. Three to 5 years of
dedicated experience reading mammograms affects percep-
tual learning by exposing mammographers to a wide set of
breast image configurations that represent most varia-
tions of normality and abnormality. We hypothesize that
this concentrated case reading experience with mammo-
graphic images has an effect on perceptual learning by pro-
ducing enhanced recognition skills akin to those attributed
to chess grand masters who, according to one estimate, are
capable of recognizing on the order of 50,000 different
chess configurations (7). It is unclear whether enhanced
object-recognition skill is the result of the development
of what the artificial intelligence community refers to as
“chunking” or template-retrieval structures that aid short-
term and long-term memory (14) or, as we have suggested,
more critically tuned visual recognition as the result of
learning and refining distinctive-feature information used
to recognize deviations from prototypic normal breast
structures (15,16).

Supporting the argument in favor of the tuning of visual
recognition, Sowden et al (16) have shown that massed
practice detecting calcifications in positive-contrast mam-
mograms (bright targets on a dark background) positively
transfers to a new task in which the calcifications are dis-
played in negative-contrast mammograms (dark targets on
a bright background). This suggests that perceptual learning
improves perceptual sensitivity in the detection of low-con-
trast targets. Massed practice was defined as a detection trial
followed immediately by feedback about the correctness of
an observer’s response. This improvement in perceptual
sensitivity occurred even though the amount of massed
practice was limited to 720 trials, followed by the transfer
test. The key to improvement may be the feedback. Gener-
alizing the results of Sowden et al (16), one cannot help but
wonder if the effects of reading experience would be facili-
tated by computer-assisted visual feedback about decision
outcomes delivered for some subset of test cases in which
truth could be verified or, at least, agreement consensus
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reached. The purpose of systematic visual feedback is to
make image perception and decision making an integral
part of a perceptual-learning reading experience (6,17).

Expertise: Chest Radiology Compared with Breast
Radiology

In interpreting performance differences, we have to be
careful to separate studies of expertise in chest radiology
from those in mammography, because chest radiology
studies have emphasized the importance of input from pe-
ripheral vision in detecting pulmonary lesions. Peripheral
vision is important during the search for inconspicuous
pulmonary lesions because a chest radiograph contains so
many anatomic landmarks (eg, heart, ribs, lungs, dia-
phragmy). It has been suggested that these anatomic land-
marks act as a map, helping peripheral guidance of search
(18). Anatomic landmarks are few in the breast (eg, nipple
and pectoralis muscle), and breast structures that might
serve as landmarks (eg, blood vessels and ducts) are inter-
woven into the breast image, creating texture differences
that are probably too subtle to be selected by peripheral vi-
sion during a search. As a consequence, rather than land-
marks, we believe that perturbations in parenchymal struc-
ture caused by compression of the breast during imaging
and desmoplastic reaction from a growing tumor provide
focal points of interest during a visual search. The superim-
position of parenchymal structures tends to make them
visually conspicuous. Because the superimposition of
parenchymal structures has the potential to mimic breast
lesions, they may be detected by peripheral vision during
the initial global survey, scrutinized during subsequent
focal scanning, and falsely reported as true lesions. In the
detection of breast lesions, it is not only important for the
observer to recognize familiar features in the image but
also to recognize odd or novel features, examine these in
detail (as reflected by fixations and decision time), and
weigh their importance in making a decision (6,19). We
assume that dwell time spent fixating the lesion, like time
spent examining the image prior to making a decision,
represents the information processing time required to
make a decision.

Decision Strategies

Our study has shown that residents develop decision-
making strategies that are similar to those of experts.
From a practical standpoint, this suggests that resident
training in mammography is effective in providing a gen-
eral framework for learning radiology image-perception
skills. However, residents are not as good as experts at
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identifying true breast lesions. We hypothesize that this
weakness is due primarily to the lack of fine-tuned visual
recognition skills. Because feedback is recognized as a

critical part of the reading experience, built into the clini-

cal mammography rotation, it is tempting to speculate that
providing computer-assisted feedback training might fa-
cilitate visual recognition skills and bring resident over-
all performance closer to that of their mentors. Despite
their limited perceptual experience, many of the radiol-
ogy residents will join clinical practices and read mam-
mograms as practicing radiologists. Does this mean that
the diagnostic performance of practicing radiologists will
suffer as a result? Probably, because the overall average
performance of residents in the present study had an av-
erage receiver operating characteristic curve area of 0.743,
which was 12% lower than the national average of 0.845
for 108 U.S. radiologists, assuming approximately the
same level of case difficulty for the two test sets (20).

Finally, we have shown that decision accuracy is di-
rectly related to amount of case reading experience. At
the present time, many radiology departments keep track
of the number of cases read by radiologists and residents,
yet no recommendations have been proposed as standards.

Our data support the need for minimum requirements
in number of case readings, such as those proposed by
the latest Food and Drug Administration regulations. As
of April 28, 1999, this requirement was 240 case readings
within the past 2 years of residency. In addition, we be-
lieve that some less abrupt transition between residency
and practice (for example, double-reading experience
during the 1st year of practice) would greatly improve
performance standards (21).
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Do Subtle Breast Cancers Attract Visual Attention During Initial
Impression?

Calvin F. Nodine, Claudia Mello-Thoms, Susan P. Weinstein, Harold L. Kundel, and Lawrence C. Toto
University of Pennsylvania, Philadelphia, PA 19104-6086

ABSTRACT

Women who undergo regular mammographic screening afford mammographers a unique opportunity to compare current
mammograms with prior exams. This comparison greatly assists mammographers in detecting early breast cancer. A question
that commonly arises when a cancer is detected under regular periodic screening conditions is whether the cancer is new, or
was it missed on the prior exam? This is a difficult question to answer by retrospective analysis, because knowledge of the
status of the current exam biases the interpretation of the prior exam. To eliminate this bias and provide some degree of
objectivity in studying this question, we looked at whether experienced mammographers who had no prior knowledge of a set
of test cases fixated on potential cancer-containing regions on mammograms from cases penultimate to cancer detection. The
results show that experienced mammographers cannot recognize most malignant cancers selected by retrospective analysis.

Keywords: Visual attention, Missed cancers, Retrospective analysis, Eye fixations

1. INTRODUCTION

Should detected breast cancers that can be seen retrospectively on the immediately prior mammogram be considered missed
or incident cancers?

This is a difficult question to answer because perceptual knowledge of lesion features and location bias the observer's
interpretation in retrospectively looking for the cancer on the prior mammogram. The issue of missed cancers is a major
source of malpractice lawsuits filed against radiologists (Berlin, 1999). This is in spite of the fact that even an "expert"
making a retrospective analysis cannot neutralize apriori knowledge in viewing the radiographic image after having once
recognized the cancer (Berlin, 1996).

Our experiment looked at subtle cancer cases. These consisted of: (a) a group of 20 subtle cancer cases that were not reported
on the mammogram immediately prior to detection (mean interval = 14.25 mo.), but were visible in retrospect when analyzed
by an experienced breast imager (SPW); (b) a group of 10 true incident cancer cases, and, (c) 10 cancer-free cases (2-year
follow up). These subtle cancer cases were digitized to 50 micron image resolution. The image gray scale for each view was
automatically set by a linear Look-Up-Table (LUT) algorithm in which a binary version of the original image was used to
find the breast outline, and then the intensity range within the original breast image segment was sampled to define the LUT .

In order to design a fair test of the question, we needed to choose observers who were experienced mammographers, but who
did not have apriori knowledge of the mammogram cases in the test set. They were, however, given information indicating
that they would be seeing subtle lesions, so their suspicion was raised. In addition, we monitored eye position during initial
interpretation of the mammograms in order to provide an objective measure of whether or not the subtle lesions were looked
at (fixated) independently of being reported. When the initial interpretation was concluded, the observer gave a general
impression (normal or abnormal). Without interruption, the observer was given additional viewing time to examine the
mammogram case using full-resolution digital zoom. If a potentially malignant or suspicious lesion was recognized, the
observer localized it with a mouse cursor. This action called up a menu prompting the observer to classify the lesion by type
and give a decision-confidence rating. If no suspicious findings were found, the observer terminated the trial by calling up the
next image. This resulted in a default normal decision.

The focus of my paper is on how analysis of eye-position data are related to whether or not subtle lesions are fixated long
enough for the observer to make a decision about them, and how these data are related to initial decision outcome and
subsequent zooming analysis. The complementary paper to this (3981-25) presented by Claudia Mello-Thoms will focus on
how zooming data are related to localizing subtle lesions and how these data are related to eye position and final diagnostic
decision outcomes. It should be noted that these two papers are based on the same experiment.

In Medical Imaging 2000: Image Perception and Performance, Elizabeth A. Krupinski,
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2. MATERIALS AND METHODS

We recorded eye-position data (ASL, Model 4000SU, Bedford, MA) on 4 experienced breast imagers viewing a test set
consisting of 20 retrospectively visible cancer cases not reported on initial screening (NR), 10 prospectively reported cancer
cases (R), and 10 cancer-free cases. Two mammographic views, CC and MLO, were digitized for each case and displayed on
a 21" high-resolution (2560 x 2048) workstation (Orwin, Model DS5000L, Amityville, NY). This was no ordinary
workstation in that a data record was generated on each observer which contained: event times of mouse clicks indicating
decision events; lesion locations; eye-fixation locations; zoom locations; and, zoom durations for each mammographic view
of each case.

3. RESULTS

Did experienced breast imagers look at subtle lesions long enough to recognize malignancy? We used 1000 ms as the dwell
threshold for recognizing a breast lesion based on earlier work in which we showed that a minimum of 1000 ms was required
for a positive decision (Krupinski, Nodine, Kundel, 1998).

Considering that NR lesions are true cancers, the answer to the question that prompted this study is "yes". Initially, 66 % of
NR lesions v.60 % of R lesions were fixated for >1000 ms.

Phase 1 time was highly correlated with total number of fixation clusters as shown in Figure 1 which relates total number of
cumulative clusters per image to phase 1 viewing time. This suggests that most visual search time was spent focally searching
and examining image features for possible lesions. This is the effect of "zooming" with the eye.

Insert Fig. 1 here

How does fixating relate to initial decision outcome? Initially, observers over reported as positive 69% of NR and 81% of R
test cases. Bar Graph 1 shows the yield of decision outcomes resulting from the initial decision for fixations >1000 ms. for
NR and R test cases. Only slightly more than half of NR cases (58%) were correctly interpreted compared 76% of R cases
based on initial decision.

Insert Bar Graph 1 here

False positive rates of 28% and 19% are not too far out of line given that in clinical practice, for patients recommended for
biopsy, only 1 in 3 will typically have a cancer. But we did not allow observers to perform additional imaging evaluations in
the present study.

How long did observers fixate to generate a decision? Observers were suspicious since they were told that they were looking
for subtle lesions. Initially, experts eyes fixated subtle lesions, but they had difficulty recognizing true from false malignant
lesions. In reality mammographers do not rely on 2 mammographic views alone to determine malignancy, but follow up with
additional evaluation images such as mag views, ultrasound and ultimately biopsy.

Mean fixation cluster dwell times by decision outcome for NR and R test cases are shown in Bar Graph 2.
Insert Bar Graph 2 here
Interestingly, decisions with mean dwell times >1000 ms. (n=166) were 7 times longer than the corresponding decisions with

mean dwell times <1000 ms. (n= 204).These latter decision times ranged from 372-680 ms. suggesting that 1000 ms. is a
good dwell threshold for defining "directed attention”.
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Bar Graph 2 is based on a lesion analysis of CC and MLO views using truth table generated by the breast imager (SPW). The
long dwells, especially for NR test cases, suggest difficulty differentiating true from false malignant lesions, implying a low
signal-to-noise ratio. These average dwell times are consistent with previous studies (e.g. Krupinski, Nodine, Kundel, 1998)

Does fixating a potential lesion result in subsequent zooming of it? Yes, 80% of initially fixated lesions were subsequently
zoomed. No difference between NR and R.

Fixations that were subsequently zoomed resulted in longer dwells (1884 ms) than fixations that were not subsequently
zoomed (1224 ms, p<.05, Scheffe test) indicating that findings that captured visual attention were followed up by zooming.

4. DISCUSSION

Experienced breast imagers with high suspicion initially failed to recognize 42% of retrospectively visible subtle malignant
breast lesions. Does this mean that these subtle lesions should not be considered "missed cancers" but rather true incident
cancers because they could not be differentiated from normal background structures? Probably not.

We have acknowledged the high rate of false positives in this study and attributed it, in part, to increased suspicion on the
part of the observers. 1t is also due to the scoring of overall performance which was done on a lesion basis meaning that
observers could, and did, generate FPs on both CC and MLO views. They also got credit for finding cancers on both views.
But, from a clinical standpoint, the troubling aspect of this performance was not the high false positive rate, but the higher
miss rate.

Why most cancers in the NR cases were not recognized at the initial viewing is unclear, but three thoughts come to mind.
First, mammographic images are far from perfect and this study used digitized versions which may have degraded the signal-
to-noise ratio. However, although subtle, the lesions were retrospectively visible on the digitized version. Second, we did not
give the mammographers the option to further evaluate the areas of potential cancer. They knew that they had to rely on the 2
views supplemented only by full-resolution zooming for a malignant/non-malignant interpretation. This is not the way
experienced mammographers work in practice and may have played out by a higher than normal miss rate. Finally, I hope
this study puts a nail in the "retrospective analysis" coffin. Although a lesion may be visible in retrospect, our experienced
breast imagers had extreme difficulty differentiating true positive lesions from false positive ones, even though they were
alerted to the presence of "subtle” cancers. So much for expert testimony based on retrospective analysis. It is easy to detect a
subtle cancer with the benefit of apriori knowledge, but without it even highly experienced breast imagers stumble.
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An Unobtrusive Method for Monitoring Visual Attention During

Mammogram Reading
Claudia Mello-Thoms, Calvin F. Nodine, Susan P. Weinstein, Harold L. Kundel and Lawrence C. Toto
University of Pennsylvania School of Medicine, Philadelphia, PA 19104

Abstract

The use of feedback to the observer of the regions of the image that attract prolonged visual dwell (> 1000 ms) has
been shown to improve nodule detection performance in reading chest x-rays. The application of such a feed back mechanism
in mammography seems appropriate, but it is often discouraged by the inherent difficuities of using an invasive eye-tracking
system. In this paper we discuss the use of an alternative method, namely, a digital zoom window, to monitor where the
observer’s attention is focused on the image. We have shown that the order in which the zooms occur, as well as the duration
of certain zooms, is statistically correlated with decision outcome for a given region of the image. Furthermore we show a
strong correlation between zooming and prolonged fixation.
Keywords: Breast cancer, eye-position monitoring, zoom window, decision outcome.

1. Introduction

Mammography is the standard screening test for breast cancer. Nonetheless, sensitivity of Mammography is about
85-90%. A question that naturally arises is: these cancers were missed due to faulty search or recognition failure?

Eye position studies have shown that the majority of missed cancers are in fact looked at [1], and the dwell times on
these locations are almost as long as on the cancers that are reported. Furthermore, eye position and a dwell time threshold
have been used to provide feedback to observers about the locations of possibly missed nodules in chest x-ray readings, and
detection performance has improved as a result [2]. Thus, in order to improve breast cancer detection, one interesting
alternative is the application of perceptual feedback. Unfortunately, eye position monitoring, using an eye-tracker, is a
cumbersome and intrusive research tool. It suffers from a variety of drawbacks, such as the need to keep the calibration
updated, adjust for spurious reflections from the observer’s eye glasses or contact lenses and reflections from the observer’s
skin, difficulty in tracking the pupil if the observer tends to lower his or her eyelids, etc. Furthermore, even with a perfect
observer there is still some discomfort due to eye dryness and headaches caused by the infrared beam used to monitor limbus
reflections. Thus, it is impractical to use such a system for long-term monitoring of the observers’ attention when reading
medical images.

In their daily practices mammographers read mammograms using a two-pass strategy. In the first pass they globally
search the mammogram for typical abnormalities, and in the second, using a magnifying lens, they repeat the search, looking
for microcalcifications or other subtle findings. In this way, we hypothesized that by allowing them to use a digital zoom,
when reading mammogram cases on a computer workstation, we would be able to monitor where on the image their attention
was directed without using any eye position monitoring. Furthermore, we hypothesized that the length of the time that the
zoom window is stationary at a particular location is related to the decision outcome yielded at that location, just as the visual
dwell is related to decision outcome.

In this paper we will examine the use of this digital zoom window to monitor the experts’ visual attention, and
compare the results with an eye-tracking system. We will show how the use of the zoom is related to the decision outcomes
in a task where the observers are instructed to search for malignancy. We will also show which percentage of these responses
had initially attracted the attention of the observers, during a scanning phase in which eye position was monitored using an
eye-tracking system, and how many of them were further investigated on a second phase in which the observer was allowed
to zoom in onto a region of interest in the image.

2. Materials and Methods

Four experienced observers (2 staff mammographers and 2 fellows undergoing training at the Hospital of the
University of Pennsylvania) examined 40 two-view mammogram cases on a digital workstation. These 40 cases were
obtained from the archives of the same hospital by one of the authors (SPW), who is a mammographer but did not participate
in the study. These cases contained 10 cancer-free cases which had been stable for a period of 2 years (N); 10 cases in which
the malignant lesion present had been reported (R), and 20 cases in which a malignant lesion, albeit present and visible, had
not been reported, being only found retrospectively (NR). Malignancy for all lesions was determined through biopsy.

The films were digitized using a Lumiscan Model 100 digitizer (Lumisys Inc, Sunnyvale, CA), with a 50 microns
spot size. The two-views were displayed on a single 21-inch, 2560x2048 gray scale monitor (ORWIN Associates, Amityville,
NY), interfaced to a Gateway GP6-266 computer (Gateway, North Sioux City, SD) running Windows 95 (Microsoft
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Corporation, USA). The cranio-caudal view was displayed on the left-hand side of the display, and the medio-lateral oblique
view was displayed on the right-hand side.

The observers were instructed to search for malignancy. The experiment was divided into two phases. In the first
phase the observers visually searched the images until they felt confident to provide an initial impression about the case,
namely, if it was normal or abnormal. During this phase the eye position was tracked using an infrared based system, the
4000SU (Applied Science Laboratories, Bedford, MA). This system has an accuracy of about 1°. Once the observer
concluded if it was a normal or abnormal case, they were instructed to pull down a menu on the screen, where they gave their
initial impression about the case. This marked the end of the first phase, and the eye-tracking system was turned off for the
second phase, in which the observers freely used a digital zoom window to further study any areas of the image where they
suspected that a malignant lesion was visible. This zoom window was about 401 x 401 pixels wide, and it was centered at the
location indicated by the observer using a mouse-controlled cursor. Inside the zoom window the image was seen at its
original resolution of 50 microns. In this phase they were instructed to, upon detecting a malignant lesion, place a mouse-
controlled cursor over the center of the lesion and click. This action would prompt 2 menu to appear in the screen, where they
answered what type of abnormality they had found (mass, calcification, architectural distortion) and how confident they were
that it was indeed malignant (low, medium and high confidence). These responses were saved to a file that also contained
information regarding the time when the decision was made.

Unbeknownst to the observers, the locations and the duration of the zooms, as well as their sequence, were also
recorded to a file. This allowed us to keep track of the areas that attracted the observers’ attention, and also how conspicuous
a stimulus element had to be in order to be zoomed (that is, were the most conspicuous elements zoomed in first?).

Based upon knowledge provided from pathology reports and posterior films, where the cancer was reported, one of
the authors (SPW) marked the coordinates of all of the lesions present in this test set and determined their nature (mass,
calcification, architectural distortion). This data allowed us to build a truth table, against which we compared the observers'
assessment, and rated their decision outcomes as being True Positives (TPs), False Positives (FPs), True Negatives (TNs) and
False Negatives (FNs).

3. Results

In this section we will present the results of using the digital zoom window, and compare these with data generated
by the eye-tracking system in the first phase of the experiment. Eye fixations were clustered by grouping raw points of eye
position data using certain rules. For example, to be included in a cluster the points had to occur in sequence and in the same
neighborhood. Furthermore, the fixations had to fall within a grouping that did not exceed 2.5 degrees. If the distance was
greater than that, a new cluster was created, having as center the centroid of that group of fixations. For each cluster, the
dwell time on the location of the cluster was calculated by multiplying the total number of data points inside that cluster by
1/60, which is the sampling rate for the ASL system.

3.1. Comparing the use of the zoom window with the clusters

In order to compare the two measures of observers’ attention, namely, the use of the zoom window and the
clustering of eye position, we calculated the mean number of zooms and clusters per case type. Furthermore, we also
measured the percentage of clusters (> 1000ms) that were later zoomed, as well as the percentage of zooms that occurred in
locations where a cluster (> 1000ms) existed during the scanning phase. This is shown on Table 1.

% of Zooms that
Case | Mean # of Mean # of % of Clusters that occurred in locations
Type Clusters Zooms were later zoomed of clusters
R 10.593 6.767 30 » 76
N 7.680 3.000 26 86
NR 9.748 5.673 29 73

Table 1. Average use of the zoom window in comparison with the visual dwell clusters
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3.2. Comparing zoom and dwell times during search with the responses made

Table 2 relates the decisions made by the observers, per image type, with the locations that attracted their visual
attention during phase 1 and the ones in which they zoomed on phase 2. As it is clear from this table, most of the locations
that elicited a response from the observers were either zoomed or received significant (>= 1000 ms) visual dwell during the
scanning phase. Furthermore, the differences in the percentages of the decisions that attracted visual attention during the
phase 1 from the ones that were zoomed on phase 2 was not statistically significant.

Image Decision Location received long Location was zoomed on

Type Outcome (>1000ms) visual dwell Phase 2
FN 29% 58%

R FP 42% 1%
TP 71% 89%

FN 46% 56%

NR FP 67% 91%
TP 54% 91%

N FP 25% 88%

Table 2. Relationship between the areas in the images that yield a decision outcome and the percentage of them that
were either looked at, during the first phase, or zoomed in, during the second phase of the experiment.

3.3. Effect of zoom order on decision type

In order to assess if the most conspicuous elements were zoomed in early or late during the zooming phase, we have
numbered the zooms according with the order in which they occurred, and we have related this order to decision outcome.

This is shown in Table 3.

Case Zoom Decision Statistically Significant
Type Number Outcome Difference Yielded
Ist TP
R i TP Between FN and TP (Scheffe’s test, p < 0.05)
3 FP B FP and TP (p < 0.05
L N etween FP an (p <0.05)
1™ ™
N i FP There were no statistically significant differences
1 TP Between FN and TP (p < 0.05)
NR 2™ FP
3@ N Between FP and TP (p < 0.05)

Table 3. Relationship between order in which the zoom occurred and the decision outcome that it yielded, as well as
the statistically significant differences between the decision outcomes., as measured by zoom order.

3.4. Effect of zoom length, per zoom number, on decision type
Considering that the order in which the zooms occurred was directly related to the decision outcomes, we decided to
verify if the duration of the zoom, measured by how long the observer kept the zoom window fixed in one location, had any

significant correlation with the decision outcomes.
For the R cases, for the eighth zoom, there were statistically significant differences between FNs and FPs (p < 0.05)

and between FPs and TPs (p < 0.05).
For the N cases, for the first zoom, it lasted about 4 seconds when it yielded a TN decision, whereas it lasted about 9

seconds when it yielded a FP. This difference was statistically significant (p < 0.05).
For the NR cases, for the second zoom, there were statistically significant differences between FNs and FPs. In this

case the FNs lasted about 3 seconds, whereas the FPs lasted about 9 seconds.
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When comparing these numbers with those yielded by the visual dwell, during the phase 1, on the locations where
later the observers indicated (or fail to do so) the presence of a malignant lesion, there were no statistically significant
differences for the R and N cases. For the NR cases, there was a statistically significant difference was between FNs and FPs
(p <0.05). In this case the dwell on the FNs lasted 1310ms, whereas the dwell on the locations of the FPs was 1970ms.

3.5. Effect of zoom on performance

In order to assess if the use of the digital zoom window helped or hurt performance, we have used the first
impression provided by the observers, as well as the locations of the clusters with a long visual dwell ( >= 1000ms) to score
the observers® performance before they were allowed to zoom in on the regions of interest. Thus, for example, if on a lesion-
free image the observer had 3 clusters of significant visual dwell, but called the case ‘normal’ at the end of phase 1, then we
scored the observer as having made 3 TNs. On the other hand, if the observer called the same case ‘abnormal’ at the end of
his or her run, then we scored the observer as having made 3 FPs on that image. The same reasoning follows on cases that
contained a lesion. Because there was no information available, on phase 1, about the confidence of the observers on their
decisions, then ROC analysis could not be used, and we have scored the observers® performance using log odds. Table 4 lists
the values for before and after zooming was allowed.

Initial Impression After Zooming
NR Lo=-0.40 Lo=-033
R Lo=-0.36 Lo=0.88

Table 4. Log odds for the observers performance before and after zooming was allowed.
It can be shown that the gain in the True Positives was about 64% for the R cases, but for the NR cases there was an
actual loss of 19% in performance, meaning that the False Positives overtook the True Positives once the use of the zoom
window was allowed.

4. Discussion

In this paper we have shown that a digital zoom window can be used to monitor the regions in the image that
attracted the observers’ attention, as opposed to an invasive infrared eye-tracker. The zoom window was used in the locations
of the majority of the decisions made by the observers, even the False Positives and the False Negatives. Furthermore, most
zooms occurred in locations where the observers had had long (> 1000 ms) visual dwell. Moreover, the order in which the
zooms occurred, as well as the length of the zooms, yielded statistically significant information about decision outcome,
which makes the use of a digital zoom window an interesting alternative to aid the observers in improving performance when
reading a mammogram test set. Zooming significantly improved performance on the R cases; unfortunately it had the
apparent effect of raising the noise level in the cases where a subtle cancerous lesion was present, which decreased
performance. Because the test set chosen for this experiment was so heavily biased towards subtle lesions, this decrease in
performance was significant. It is unclear if in clinical conditions the use of the zoom window could actually help radiologists
to make fewer False Positives and, most importantly, fewer False Negatives.
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Abstract !
Early detection of breast cancer is very desirable, considering that it can significantly change the prognosis for a

woman diagnosed with this disease. Nonetheless 10-30% of all breast cancers are missed by the radiologist, albeit they are i

visible in the mammogram. In this work we have studied the underlying structure of the image in the location of the lesions

that were missed and the ones that were found, as well as in the locations of the lesions that did not exist but were reported by

the radiologist. We have shown that there is a statistically significant difference in the information content of different

frequency bands that results in various decision types. We have also shown that it is possible to use a pattern classifier, based

upon the information contents of the spectral decomposition of a local image region, to predict the most likely decision

outcome.

Keywords: Image structure, perceptual errors, mammogram reading, wavelet packets.

1.Introduction

Early detection can significantly change the prognosis for a woman diagnosed with breast cancer. Thus, renewed

efforts have been made to develop accurate imaging techniques that can detect abnormalities of smaller sizes. Nonetheless,
a problem that is usually overlooked when considering such imaging techniques is the radiologist's ability to correctly
interpret what is on the image. It has been shown [1] that 10-30% of all breast cancers are missed, being only found
retrospectively, albeit they are visible in the mammogram. Furthermore, from these, 65% are fixated by the high-resolution
central/foveal vision [2]. In other words, these cancers are not missed because of search errors, but because of perception and \
decision-making errors. |

Kundel and Nodine [3] have derived a model that links perception and decision making in medical image reading.

This model predicts that perception, and ultimately decision making, start out with a global impression of what is in

the image. This global impression is compared to a cognitive schema, stored in memory, of similar images that the observer

has seen in the past. This comparison flags regions of potential abnormality, which the observer examines by visually

scrutinizing the area with the high-resolution fovea. This results in the extraction of features that are processed and used for

object categorization. If a positive fit is found with some representation in memory, additional visual search is performed, f
until an internal threshold is crossed, and the abnormality is decided positive or negative.

Many factors have been shown to play a role in aiding or preventing lesion detection. Among these, the relationship
between the abnormality and the background tissue surrounding it has been shown to be one of the most important. Burgess
and colleagues [4] have shown that, in mammograms, lesion detectability is not related to the size of the lesion, but rather to
a power law which takes into account the signal energy and the background structure power spectrum. This means that even
large lesions can be missed, if certain conditions hold between the lesion and its surrounding tissue.

In this paper we will examine the relationship between breast masses and their surrounding tissue as a function of
what decision type they yield, namely, if they yield True Positives (that is, the observer correctly finds a malignant
abnormality present in the mammogram), True Negatives (if the observer correctly interprets normal tissue as being lesion-
free), False Positives (when the observer incorrectly interprets normal tissue as being malignant) and False Negatives (when
the observer fails to indicate a malignant lesion that is visible in the mammogram).

P SRS

2.Materials and Methods

Eight experienced observers (3 mammographers from the staff of the Hospital of the University of Pennsylvania,
HUP, and 5 fellows undergoing training at the same institution) read 5 two-view (cranio-cauldal, CC, and medio-lateral-
oblique, MLO) mammogram cases. All cases had a malignant mass visible in at least one view. One case contained multiple
malignant masses, visible in both views. These cases were obtained from the archives of HUP. The films were digitized using
a Lumiscan Model 100 digitizer (Lumisys Inc, Sunnyvale, CA), using a 100 microns spot size. The two-views were displayed
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on a single 19-inch, 2048x2048 gray scale monitor (GMA 201, Tektronix, Beaverton, OR), interfaced to a Sun Sparc
computer (Sun Microsystems, Sunnyvale, CA).

The observers were instructed to search for malignancy, and freely examined the cases until they felt confident to
point out if and where a malignant lesion was present. The eye position of the observers was monitored during search, and it
was used to determine the areas in the image that attracted the observers' attention.

The eye position of each of the observers was played back over the mammogram case examined, and from each case
10 regions were manually extracted using a mouse-controlled cursor. These regions contained true lesions that were indicated
by the observer (and were labeled TP), true lesions that were missed by the observer (labeled FN), lesion-free areas that were
indicated by the observer as being lesion-containing areas (FP) and lesion-free areas that were correctly interpreted by the
observers as being normal tissue (TN).

Each of these regions was processed using a filter bank that contained quadrature-mirror filters, using a process
known as Wavelet Packets. This tree was two-levels deep. During the decomposition of each region some statistical
parameters were calculated for each frequency band, including the mean and standard deviation and the signal energy in that
band. Each band was represented by a combination of two numbers, one that indicated where in the tree the band was located
(levelwise) and one that indicated if the signal being processed had been low-(or high-)passed in the previous step and was
now being low-(or high-)passed.

3.Results

The mean values for the energy in the different frequency bands is listed in Table 1.

Mean energy Mean energy
band value band value
00 11327.45 22 2.08
01 4.29 23 1.99
02 20.17 30 16.11
03 25.01 31 2.08
10 42502.70 32 59.05
11 0.44 33 0.44
12 16.11 40 19.86
13 19.86 41 1.99
20 0.44 42 0.44
21 11.38 43 73.77

Table 1. Mean values for the energy per frequency band.

As shown, there is a wide variability in the information contents of each of the bands. Thus, the bands were divided
in three classes: the low energy (which had a mean <= 10), the medium energy (10 <mean <= 50) and the high energy bands
(mean > 50). Thus, in order to assess the contribution of each band on the decision outcomes an ANOVA analysis was run. In
all Scheffe tests listed below, the significance level was 5%. Table 2 lists these results.
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Band Band Contributed for the
class Name differentiation between:
High 00 TPs from FPs (p < 0.05)
10 TPs from FPs (p < 0.05) :
) {
Medium 21 FPs from TNs (p < 0.05)
1
Low 42 FPs from TNs (p < 0.05) ’
|

Table 2. List of the energy bands that contributed to the differentiation of pairs |
of decision outcomes, as tested using Scheffe’s test.

The importance of these results stems from the fact that they clearly state that there exist differences in the energy
contents, per frequency band, of the regions of the image that result in different decision outcomes.

Furthermore, if one considers the mean values of energy on the different frequency bands that lead to True Positive
decision outcomes as a base value, then the breakdown of energy, in percentual values, relative to the levels of the TPs, for
the remaining decision outcomes is shown in Figure 1.

Figure 1. Percent differences between the TPs and FPs, FNs and TNs.
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As Figure 1 shows, the energy contents are generally higher for the True Negatives, particularly for the intermediate
energy bands. As their contents begin to change, that is, to lose power in the majority of the bands, the False Positives are
formed. As power continues to decrease, the False Negatives come about. An ANOVA was run on these percentual
differences, and it was found that there are statistically significant differences between FNs and FPs (Scheffe test, p < 0.05),
FNs and TNs (p < 0.05) and FPs and TNs (p < 0.05).
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Knowing from the first ANOVA which bands are responsible for the differentiation between different pairs of
decision outcomes, we decided to use a Neural Network to predict, from the values of the energy in the high- and
intermediate-bands, the decision outcome that that a particular region of image would yield. Additionally a parameter that
ranged from 1 to 8 was used to inform the network which observer had provided the data being examined. The reasoning here
is that different observers may perceive the same region of the image very differently; for example, a more experienced
observer may be able to detect a subtle mass whereas another observer may not see anything.

Using an Adaptive Resonance network the results shown on Table 3 were obtained, in terms of correct and incorrect
responses. Once more, the purpose of the network was not to determine if an abnormality was present or not on a particular
region of the image, but rather, to determine which decision outcome was more likely for a given observer when examining
that region of the image.

* Class Correct Incorrect
Predictions Predictions
TP 44/69 = 64% 25/69 = 36%
] FP 46/60 = 77% 14/60 = 23%
TN 37/53 = 70% 16/53 = 30%
FN 5/18 = 28% 13/18 = 72%

Table 3. Percent values for correct and incorrect decision outcomes as predicted by
the neural network.

This result clearly indicates that it is possible to separate TPs, TNs and FPs based upon the energy decomposition of
the region indicated by the observer. Nonetheless, the results for the False Negatives were not good. This is certainly a
reflection of the limited number of such samples that was available in this pilot study.

4.Discussion

These results indicate that there is a particular configuration of energy, in the frequency domain, that leads observers
to detect true lesions. Furthermore, there also exist particular energy configurations that will likely lead the observers to make
False Positives, False Negatives and True Negatives.

When using a pattern classifier to automatically predict which decision outcome will a particular combination of
energy in different frequency bands yield, we found that the TPs, FPs and TNs could be reliably predicted, but, due to the
small sample size, the same was not true for the FNs. We believe that as our research proceeds, with a much larger database,
the results for the FNs will significantly improve.
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The cathode ray tube of a workstation for use with digital mammograms was
calibrated with a photometer to produce an input-output characteristic curve
similar to the perceptually linear curve defined by a current display standard.
Then, a test pattern consisting of bars of increasing intensity containing disks
of decreasing contrast was used by an observer to estimate the minimal detect-
able contrast (MDC) at different levels of display luminance. The MDC was mod-
eled by a parabola. The shape of the parabola was determined by the observer’s
perceptual responses, and the range was determined by the maximum and mini-
mum pixel values of the breast parenchyma. As each mammogram was displayed,
the contour of the breast was automatically found and pixels within the breast
image were sampled to determine the pixel values that were used to compute
the maximum and minimum pixel values. The parabola was integrated to de-
termine the look-up table for the initial MDC-tempered display of the mammo-
gram. Preliminary observer performance tests showed no significant differences
in the accuracy and speed of three radiologists who read a set of mammograms
when the MDC-tempered display was compared with the perceptually linear
display.

Abbreviations: CRT = cathode ray tube, MDC = minimal detectable contrast, ROC = receiver operating characteristic
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B INTRODUCTION

Given the present state of the art, a static cathode
ray tube (CRT) display can simulate but not du-
plicate the image quality of a film mammogram
displayed on a light box. The film is displayed at
higher luminance and has greater spatial resolu-
tion and a wider gray-scale range (1). However,
the film captures and displays the image by us-
ing a fixed set of predetermined display param-
eters. The CRT display can be adjusted to ex-
plore the full range of contrast and resolution
available in the digital image by using the win-
dow level to change the gray-scale range and
zoom-rove functions to change spatial resolution.
The appearance of the gray scale within the im-
age can also be changed by modifying the input-
output transfer characteristic of the CRT by us-
ing look-up tables. The overall appearance of
the image can also be changed in more funda-
mental ways by the application of image process-
ing such as edge enhancement. In this article, we
consider only the effects of modifying the input-
output transfer characteristic. To have identical
images look alike when displayed on different
CRTs, a display standard called perceptual lin-
earization has been proposed (2,3). When the
standard is used, equal changes in the pixel gray-
scale value produce equal changes in the just
noticeable difference (JND) of luminance in the
image.

A display standard provides an equivalent
starting place for each image but may not pro-
vide the best distribution of gray levels for a par-
ticular image in a particular reading environment.
For example, the image may be too dark or too
light, just as an image on film may be under- or
overexposed. The ability of the human eye to
see the intensity difference between two areas
in an image (contrast sensitivity) depends on
the average intensity of the light reaching the
eye (4). The average intensity of the light reach-
ing the eye is termed the adapting luminance.
When the adapting luminance is very different
from the average luminance of the area of inter-
est in the image, the ability to see contrast is de-
creased. This is the reason why masking the
bright areas on a film illuminator improves the
appearance of images, particularly dark ones.
Most of the light that affects contrast sensitivity
comes from the displayed image, but some comes
from room illumination including that which is
reflected from the CRT surface. Once the room

illumination has been minimized, the contrast
sensitivity of the eye can be maximized by ad-
justing the gray scale to smooth out extreme
variations in brightness within the image (5,6).

Using a model proposed by Mokrane (7), Liu
and Nodine (8) developed an algorithm that
equalizes perceived contrast over the image,
with some starting level of adapting luminance
assumed. Contrast in the image is modified on
the basis of the theoretical threshold-contrast
curves of Heinemann (4). The workstation de-
scribed herein extends the work of Liu and
Nodine (8) to include adjustment of the input-
output transfer characteristic for ambient illumi-
nation and for the gray-scale range of the particu-
lar mammogram being displayed. In this article,
we describe the display station, development of
the perceptually tempered display, and evalua-
tion of the display station.

B THE DISPLAY STATION
The display station shown in Figure 1 uses a com-
puter (model GP6-266; Gateway 2000, Sioux
City, Iowa) with a Pentium II processor (Intel,
Santa Clara, Calif). The computer is interfaced
to a gray-scale monitor (model DS5000L; Orwin
Associates, Amityville, NY) by means of an in-
terface board (model Md5/PCI-1; Dome Imaging
Associates, Waltham, Mass). The computer soft-
ware is written in IDL (Research Systems, Boul-
der, Colo), a high-level graphics language.
Before use of the display station, the video
monitor was photometrically calibrated. A pho-
tometer (model J17; Tektronix, Beaverton, Ore)
interfaced to the computer was used to measure
the intensity of a 10 x 10-cm square of uniform
luminance located in the center of the display
surface. (The luminance of a display such as a
CRT or a film illuminator is measured in foot-
lamberts or candelas [cd] per square meter [1
foot-lambert = 3.4 cd/m?].) The intensity of the
display surrounding the square was set at a lu-
minance of 55 cd/m? which was produced by a
pixel driving intensity value of 128. The lumi-
nance was measured over 17 equally spaced
pixel driving intensity values from 0 (black) to
255 (white); these pixel driving intensity values
corresponded to a luminance of 1.7-343 cd/m?.
Digitization and logarithmic transformation of
the photometric data were performed; they were
then displayed on the CRT along with an ideal
perceptually linearized curve. The brightness
and contrast controls were adjusted until the
calibrated curve visually matched the ideal curve.
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Figure 2. Input-output transfer characteristic of the

CRT (top curve) and final minimal detectable contrast
(MDCO) look-up table (bottom curve). The curves have
a common pixel driving level axis. The nonlinearity
of the MDC curve is exaggerated for purposes of il-
lustration; the actual difference from the linear curve
is usually more subtle. The effect of the MDC look-up
table on the displayed image can be seen by follow-
ing the dotted lines, which represent extrapolation
from the image pixel value to the display luminance.

Once the CRT is calibrated, it needs only occa-
sional adjustment. The shape of the input-output
transfer characteristic adjusted according to the
perceptually linear display standard is shown in
Figure 2 (top curve).

Figure 1. The digital mammogra-
phy workstation.

i & bk 4

Figure 3. MDC test pattern. ¢ = typical observer
response.

B DEVELOPMENT OF THE PERCEPTU-
ALLY TEMPERED DISPLAY

e Estimation of the MDC

The MDC test pattern consists of nine horizon-
tal bands of increasing intensity (Fig 3). Each
band contains eight disks of decreasing contrast.
This test pattern was displayed for each ob-
server prior to a viewing session. The observer’s
task was to choose the “least visible” disk in
each band. The observer’s responses are af-
fected by the display contrast and the ambient
room lighting. A parabola was fitted to the con-
trast of each indicated disk and the intensity of
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the horizontal band; this parabola approximates
the dependence of the observer’s contrast sen-
sitivity on display luminance at the level of am-
bient illumination (Fig 4).

e Determination of the Range of Pixel
Intensities of the Mammogram

As each case is displayed, the maximum and
minimum pixel intensity in the breast paren-
chyma is determined by sampling over a region
that includes breast tissue out to just beyond
the skin line, thus excluding the extremes of
pixel driving levels due to lead markers, labels,
and cassette edge artifacts. Determinatjon of
the pixel intensity range is performed with a
boundary detection procedure: After applying a
median filter, an intensity threshold value 5%
above the background (dark level) is selected.
By means of this threshold, the breast image is
transformed into a binary image and a contour
is determined on the resultant image. Image in-
tensities are then sampled on the original breast
image along 30 equally spaced lines (Fig 5).

e Production of the MDC Look-up Table
The best-fit parabola for MDC versus displayed
luminance is integrated to produce an MDC-cor-
rected look-up table. The maximum and mini-
mum pixel driving levels determined from the
mammogram are applied to the MDC-corrected
look-up table so that the output intensity just
matches the input intensity (Fig 2 [bottom
half]). The MDC look-up table is designed to
equalize the detectability of equal-contrast tar-
gets regardless of the regional mean pixel inten-
sity surrounding the targets. The advantage of
redistributing the contrast in this “tempered “
fashion is to provide an initial view that allows
visual access to the dark regions (fat, skin line)
as well as the light regions (muscle, fibrous and
ductal tissue). The viewers are still able to ma-
nipulate the gray scale of the image. All of the
calculations and look-up table manipulations
are done by using a 12-bit pixel intensity scale.
This scale is transformed into an 8-bit scale for
display.
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Figure 4. Approximation of the contrast sensitivity
curve with a parabola. Heinemann (4) measured hu-
man contrast sensitivity at different levels of adapting
luminance. Examples of this relationship at two adapt-
ing luminance levels are shown (solid lines). In real-
ity, there is a whole family of curves of similar shape
that have a minimum that shifts with the adapting
luminance. Consider the lower curve, which corre-
sponds to an adapting luminance of 100 cd/m? The
eye is maximally sensitive at a display luminance of
100 cd/m?, with an MDC of about 0.05. However, an
object located in a dark part of the image at 10 cd/
m? would have to have a contrast of 0.1 to be seen.
The practical solution in radiology is to use a spot-
light to raise the luminance to 100 cd/m? and improve
the contrast sensitivity. As the adapting luminance
decreases, the curves shift upward and maintain
roughly the same shape. Attempts have been made
to fit the curves from Heinemann’s experimental data
with simple equations (5). The algorithm of Liu and
Nodine (8) required advanced information about ad-
aptation level and was computationally intensive. We
simplified that algorithm by assuming that a parabola
(dashed lines) could be used to approximate contrast
sensitivity at different levels of adapting luminance.
The fit is reasonable at high adapting luminance (100
cd/m?), where radiologists prefer to operate. The fit
for a lower adapting luminance (10 cd/m? [upper
curve)) is not very good. However, this luminance is
well below a practical average viewing luminance.

e Display of the Images

The CRT is photometrically calibrated as part of
the regular quality assurance program. The MDC
calibration is performed before each reading
session with the ambient illumination set at 1.6
lux at the location of the observer’s eyes. The
calibration takes approximately 15-20 seconds
to complete. The correction of each image is
done offline prior to the test. Observers are able
to use a single slider to adjust the MDC look-up
table. The slider can smoothly adjust the dis-
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Figure 6. Mammographic image displayed with standard perceptually linearized display (a) and MDC-tempered
display (b). The skin line (arrow in b) is not visible in the standard perceptually linearized display (a).

Figure 5. Pattern used for sampling pixel intensi-
ties on the breast images. The intensities of the
breast are sampled, and nontissue regions beyond
the breast are eliminated.

play from a look-up table, which produces the
baseline perceptually linearized display stan-
dard, up to a maximum MDC setting. Figure 6a
shows a breast image displayed with standard
perceptually linearized display; Figure 6b shows
the image displayed with MDC-tempered dis-
play, which allows visualization of the skin line.

B EVALUATION OF THE DISPLAY STA-
TION
Our development cycle includes periodic bench-
mark testing by using a sample of cases from a
digital database of normal and abnormal mam-
mograms, in which all of the malignhancies and
many of the benign lesions are histologically
proved. The mammograms were originally
obtained on film and were digitized to a pixel
size of 100 um with a digitizer (Lumiscan 100;
Lumisys, Sunnyvale, Calif). Readers are shown a
craniocaudal view and a mediolateral oblique
view and are asked to move a pointer on the
display to any potential malignant lesion and
click the mouse. The response time from the
start of viewing each case and the location of
the pointer are recorded by the software. After
the click, a pull-down menu appears; the reader
must select one or more diagnoses (ie, mass,
calcification, or architectural distortion) and in-
dicate a confidence level for malignancy. These
data are used to compute a receiver operating
characteristic (ROC) curve and determine the
area under the curve.

Two mammographers (S.P.W., EF.C)anda
general radiologist (H.L.K.) were tested on 75
mammograms: 25 with malignancies, 25 with
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Table 1
Areas under the ROC Curve for Perceptually
Linear Display versus MDC-tempered Dis-

play

Linear Tempered
Reader Display Display Difference
1 0.910 0.930 0.020
2 0.861 0.869 0.008
3 0.627 0.750 0.123
Mean 0.799 0.850 0.050*

Table 2

Time to First Decision in Seconds for Per-
ceptually Linear Display versus MDC-tem-
pered Display

Linear Tempered
Reader  Display Display Difference
1 76 51 =25
2 55 84 29
3 51 47 —4
Mean 61 61 o*

*Standard deviation = 0.063.

*Standard deviation = 27.

benign lesions, and 25 that were normal. Table
1 is a comparison of the areas under the ROC
curve. Although each reader did better with the
MDC-tempered display, the difference was not
significant when tested with a paired ¢ test. The
time to the first pointing out of a lesion was
very variable but on average was not different
for the two display modes (Table 2).

B CONCLUSIONS

The accuracy and speed of the tempered dis-
play function are equal to those of the standard
perceptually linearized display function when
used on a moderately bright monitor (300 cd/
m?). With the tempered display function, the
initial view of the image provides visual access
to lighter and darker regions of display with
some sacrifice of visual access to medium-inten-
sity regions. The display can be adjusted by
moving a single slider, which is an attempt to
simplify the user interface. Development of the
display station is continuing with the addition
of the use of verbal commands to modify dis-
play parameters and an eye position-contingent
roving window.
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19.1 Introduction

This chapter is about expertise in radiology. In the domain of radiology, exper-
tise is largely acquired through massive amounts of case-reading experience. But
just as everyone who is taught how to read is not an expert reader, so too every-
one who is taught how to read medical images is not an expert image mtcrpreter.
The criterion that defines an expert medical-image interpreter is consistent and re-
liably accurate diagnostic performance. Nothing less will do. For example, despite
intensive study and training, it has been shown that radiology residents at the end
of residency training are significantly below the average of a large national sam-
ple of U.S. radiologists in overall accuracy of screening mammograms for breast
cancer (Nodine, Kundel, Mello-Thoms et al., 1999). This finding is not surprising
when considered within the framework of research on expertise, which stresses
that expert performance in many domains is, statistically speaking, rare, and usu-
ally accomplished only after extensive training and practice (Chi, Glasser, Farr,
1988; Ericsson and Chamess, 1994).

We view expertise as the ability to acquire and use contextual knowledge that
diffcrentiates one from one’s peers in a particular field. In this sense, expertise is a
contextual concept, because the knowledge-structured skills that make an expert in
one domain do not transfer to other domains (Nodine and Krupinski, 1998; Patel
and Groen, 1991). Moreover, expertise is composed of a sum of different parts,
cach having a unique influence on the total. For examplc, in the context of medical
image interpretation, an expert is someone that has had more experience, meaning
diagnosed more cases, thus providing a broader range of variations of normalcy
against which to differcntiate abnormal findings. An cxpert is also someone who
has a natural talent to perform within a chosen domain. Again, from a radiologi-
cal perspective, different radiologists may have scen a similar number of medical
images, but some will stand out in their ability to diagnose abnormalities, and per-
form the task faster. This component of expertise is called by us talent, but there is
no doubt that motivational factors may be coloring what is termed talent (Ericsson,
1996, p. 27; Ericsson and Charness, 1994, pp- 728-729).

Although expertise has been extensively studied in many domains, the concept
is still very clusive. If at this point one was able to pinpoint what makes an expert
in any given field, one could certainly go out and create an artificial expert in that
field simply by teaching a machine the skills that make onc an expert. This has
been tried many times, and some success has been achieved. Expert systems have
been developed to find calcifications in mammograms (Nishikawa, Jiang, Giger et
al.. 1994), to detect signs of lung cancers in chest radiographs (Lo, Lin, Freemanct
al., 1998), to differentiate benign from malignant lesions in mammograms (Zheng,
Greenleaf, Gisvold, 1997). However, we are still very far from having an intelligent
system that can actually read and interpret a medical image as reliably, accurately,
and cfficiently as a human expert.

The reason for this may be in the nature of expertise itself. As previously men-
tioned, medical cxpertise is formed by two parts, one that is computable, which re-
sponds to training by lcarning, and one that is uncomputable, which is independent
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of training, referred fo as talent. We can design models that approximate the logi-
cal reasoning of experts when they arc examining an image and making a decision,
but there has been little success modeling internal processes that are responsible
for the talent part (see Ericsson and Charncss, 1994). Furthermore, these processes
do not scem to arise from a structured thinking hierarchy, but rather scem to evolve
spontancously.

Thus, one is forced to consider the possibility that machine expertisc will be
restricted to the acquired part that makes up human expertise, which is related to
training, to structured knowledge, to rule-based thinking. This is not to say that
the performance of expert systems should not be compared with human experts,
but rather, that expert systems possess a different kind of expertisc. This by no
means invalidates the need for intelligent systems in medical diagnosis. As shown
elsewhere (Nodine, Kundel, Mello-Thoms ef al., 1999) it takes a great number of
cases for one to become an expert mammogram reader, and it is here that intelligent
systems will find their niche, by either providing a second, informed diagnosis, or
by working as tutors, helping less experienced radiologists or radiology residents
make as many correct decisions as possible, while keeping errors to a minimum.
It is our belief that in contexts where both parts of cxpertise are operating, expert
systems will surpass human performance in the computable part, but remain void
when it comes to the talent component of expertise.

19.2 Plan of the chapter

Radiology is largely a visual discipline. This means that rather than relying on
dircct observation of paticnts, radiologists rely on interpreting image representa-
tions (usually generated by x-ray imaging) to gather diagnostic information about
the medical status of patients. They may also read the patient’s clinical history
either to guide or to clarify image interpretation.

The interpretation of medical images depends on both image perception and
cognitive processes. Often-cited perceptual skills include visual search, visual in-
formation processing, and visual discrimination and differentiation which are part
of perceptual learning. Tn addition to perceptual skills, the interpretation of medi-
cal images depends on cognitive skills primarily related to diagnostic reasoning and
decision making. Expertisc represents a honing of these perceptual and cognitive
skills. But, how much of expertise in radiology is learning to understand what onc
is looking at anatomically (basic science) and how much is what one secs within
a clinical context as signaling pathology (clinical problem solving) is difficult to
estimate.

In this chapter we shall summarize some of the findings on expertisc in ra-
diology. The theme is to show how image perception interacts with decision
making to producc skilled diagnostic interpretation of medical images. The ba-
sic information-processing flow to achieve this is: VISUAL SEARCH—OBIJECT
RECOGNITION— DECISION MAKING. This is our “brand” of expertise the-
ory (Nodine and Kundel, 1987). It is biased toward the perceptual side, whereas
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many radiology expertise studies are biased toward the cognitive side. Our percep-
tual bias is reflected in our choice of theory and methodology. This is truce of the
cognitive camp as well. Thus, we look at radiology expertise as primarily visual
problem solving. Our methods depend heavily on generating theoretical inferences
from eye-position data, whereas many studics using the cognitive approach de-
pend on generating theosetical inferences from verbal-protocol data (e.g., Lesgold,
Feltovitch, Glaser er al., 1981; 1988). Note that a third approach exists, namely,
the connectionist approach (Dawson, 1998), which models information process-
ing in artificial intelligence (AI) using artificial neural networks (or ANNs). This
approach will be discussed Liter in this chapter.

[ We will use a recent study of mammography expertise to illustrate some basic
points: First, how experience influences the acquisition of expertise, and a dis-
cussion of the imperfect translation of experience as an error-correction feedback
mechanism for training radiology residents. Second, how the three components of
information processing, search, recognition and decision making, combine to pro-
duce diagnostic-decision outcomes, Third, how the information-processing model
works across radiology subdomains by comparing research findings in chest and
breast radiology, and pointing out some important differences in the two subdo-
mains that may result in negative transfer.

19.3 Expertise roots

Expertise research has its roots in the intersection of cognitive psychology and
computer science, now known as artificial intelligence, or Al The cognitive psy-
chology side of this research was concerned with identifying human information-
processing skills associated with solving intellectual problems (c.g., playing chess,
solving physics problems, diagnosing disecase), and the computer-scicnce side was
interested in modeling cognitive processes by developing programmable algo-
rithms that would generate performance outcomes with the ultimate goal of creat-
ing expert systems. The overarching framework for research on expert systeims was
learning theory generally and problem solving specifically. Man was conceived of
as a processor of information, and the process of secking information was analyz-
able in terms of contingencies of reinforcement, that is, feedback, that corrected
erroncous behavior and thus guided the course of learning.

A lot of water has passed over that dam since Al began the study of expertise.
The late Alan Newell, one of the founding fathers of Al predicted in 1973 that
“... when we arrive in 1992 (Newell’s retirement date from Carnegie-Mellon Uni-
versity) we will have homed in on the essential structure of mind” (Newell, 1973,
p. 306). Needless to say, that prediction was a bit optimistic, but it does reflect
the enthusiasm and hopes that one of its founders had for AL Some would say the
defining moment for the beginning of AT was George Miller’s article on the limits
of human informatiomproccssing capacity (Miller, 1956). Cognitive psychology
was thought, at the time of its inception in the 50’s, as reflecting a shift away from
behaviorist leaming theory toward finding mental structures (rules for learning and

.
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problem solving). Looking back today, almost 50 years later, it is somewhat amus-
ing to see how stubbornly reinforcement (albeit redefined), the cornerstone of be-
havioristic theory, continues to survive within mainstream learning theory in spite
of the cognitive revolution which spured cognitive theory, cognitive science, and
artificial neural networks.

As already indicated, research on expertise has been wide ranging and it is not
the purpose of this chapter to review it all. Rather, the goal is to provide a glimpse
of expertise research by focusing on radiology. When it comes to studying exper-
tise, the domain of radiology is broad. In today’s era of specialization in medicine,
we have cxperts in subdomains of radiology, as for example, breast imaging (mam-
mography), thoracic imaging, angiography, etc., and an expert in mammography is
unlikely to also be an expert in another subdomain.

The hierarchial ordering from general to specific domains is important to recog-
nize in studying expertise in radiology because, although radiology resident train-
ing provides mentoring experiences in a number of subdomains of radiology, the
ultimate goal of such training is to make a radiologist who is Master of one subdo-
main, rather than Jack of all subdomains. The result is that radiology expertise is
subdomain specific. This emphasis on subdomain-specilic training and experience
fine tunes the radiologists such that performance of an experienced mammographer
may suffer if asked to interpret a chest radiograph, or performance of an experi-
enced chest radiologist may falter if asked to interpret a mammogram. From the
standpoint of a learning theory framework, expertise skills are specific to a given
subdomain and do not effectively transfer to other subdomains within radiology.
This is true of medical expertise in gencral (Patel and Groen, 1991).

19.4 Expertise, acquired or innate?

Most expert performance is acquired, not innate (Ericsson and Charness, 1994).
This is not to say that native talent plays no role, but its role is limited, particularly
in medicine. Perceptual tests to identify visual skills of prospective radiologists
have not generally been successful (Bass and Chiles, 1990; Smoker, Berbaum,
Luebke et al., 1984). This is beeause what the test purports to measure (e.g., spatial
relations) is either too abstract or too far removed from the radiology task. Thus
there is little or no transfer of test skills to radiology reading skills. A good ex-
ample is finding NINA in Al Hirschfeld’s drawings of theater scencs. Hirschfeld’s
{ask calls on visual-search skills for locating NINA targets within the theater scene,
and object-recognition skills for disembedding letters from features of theatrical
scenery in order to recognize NINA’s name. These scarch and recognition skills
scem to be very close to what is required of the radiologist searching a chest image
for a lung nodule, but we have found that radiologists are no better than laypersons
at finding NINAs (Nodine and Krupinski, 1998). This result seems to argue that
expertise in radiology is very narrow and subdomaine specific. In the following
section we will examine expertise in different domains, and see how expertise in
chess and in the medical ficld compare to expertise in radiology.

o
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19.4.1 Chess-playing expertise

Parallels have been made between the chess master and the radiology expert
performing their tasks (Wood, 1999). Both have built extensive, organized, and
searchable mental arrays containing task-specific information such as configura-
tions of chess pieces mapped to feasible game-playing moves, or radiographic
patterns of anatomy mapped to pathological signs that are uscd in solving their
respective problems. These mental arrays are often referred to as schemas.

Expertisc research starting with de Groot’s (1965) and Chase and Simons’
(1973) scminal studies and gencralizing across a number of expertise domains has
found practice to be the major independent variable in chess skill. For example,
Charness, Krampe and Mayr (1996) have shown that “deliberate practice” is criti-
cal for acquiring skill in chess playing. What is meant by deliberate practice is self-
motivated effortful study. We believe that this definition, broadly stated, describes
the type of study medical residents go through during residency training. Their
study is closely supervised by mentors who motivate learning and guide training by
drawing on a vast data basc of clinical experience. In chess, for example, Charness
et al. estimate that 32,000 hours of deliberate practice over 9 to 10 years are neces-
sary on average to achieve grandmaster levels (2500 Elo points; Elo was the name
of the man who developed the scale). It is important to note the Charness et al.
distinction between deliberate practice, and casual practice which involves playing
games with others. Deliberate practice correlates higher with chess skill (r = 0.60)
than does casual practice (r = 0.35), which lead them to conclude that deliberate
practice is the primary change agent influencing chess skill. One reason this con-
clusion is so important to our discussion of radiology expertise is because acquiring
radiology skill depends on highly motivated and supervised learning, and Chamess
et al. have shown that this type of learning produces more effective cognitive-skill
outcomes than casual learning and book reading. This realization has important
implications for training radiology residents where supervised learning takes the
form of mentor-guided experiences.

Another reason 1o look carefully at chess expertise is because chess skill has a
perceptual component of search that draws on schematic representations of chess-
move patlerns leading to “best” game moves (Gobet and Simon, 1996) in much
the same way as radiology skill has a perceptual component of search that draws
on schematic representations of normal anatomic patterns against which to com-
pare new image input for signs of abnormality. Studies of expertise in both chess
and radiology have been modeled as problem-solving tasks of the general form:
SEARCH & DETECT—EVALUATE-—DECIDE. Both chess and radiology have
a strong visual-spatial component.

19.4.2 Medical expertise

The study of medical expertise draws heavily on linguistic analysis of the se~
mantic content of propositional statements of physicians recorded as verbal pro-
tocols, or thinking out loud. The verbal protocols arc scored for the recall of
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medical-knowledge representations and rcasoning processes used to generate ei-
ther data-driven inferences or hypothesis-driven facts leading to diagnostic expla-
nations (Patel and Groen, 1991). In contrast, the study of radiology expertise, be-
cause the focus is shified from observations of a live patient to medical images,
focuses on perceptual analysis of image features, or statcments about the interpre-
tation of image features (sce Raufaste, Eyrolle, Marine, 1998).

19.4.3 Radiology expertise

The study of expertisc in radiology has been Jimited to the subdomains of chest
radiology and mammography. The radiologist’s task in both cases has been mod-
cled within a visual problem-solving framework. However, different experimental
methods have been used to gain insights into the nature of perceptual-cognitive
skills underlying medical-image interpretation. The cognitive approach as cxem-
plified by Lesgold (1984) and Lesgold, Feltovitch, Glaser et al. (1981, 1988) uscs
a form of verbal-protocol analysis involving analyscs of observers’ diagnostic re-
ports and sketches of abnormal regions to identify cognitive structures that pre-
sumably interact recursively between hypotheses and image featurcs to generate
diagnostic outcomes.

The perceptual approach as exemplificd by our rescarch (e.g., Nodine, Kundel,
Mello-Thoms ef al., 1999; Kundel and Nodine, 1975) has used a combination of
measures derived primarily from eye-position data to characterize schema-driven
scarch strategies lcading (or following) focal analyses of perceptual features from
which diagnostic decisions arc inferred. The cye-position data include percent cov-
erage of the image by a fixed circular field approximating the size of the fovea
plus error tolerance, time spent dwelling on sclected image location (target or non-
target) referred to as cumulative gaze duration or visual dwell, and time to detecta
target referred to as search time to a hit. In our most recent work in mammography,
we compared speed-accuracy performance as a function of level of expertise using
a chronometric analysis of decision time. Decision time is similar to reaction time
used by Posner (1986). We used decision time to measure how training influenced
information-processing skills in screening mammograms for breast cancer.

Expertise in radiology, and in medicine more generally, refers to reliably accu-
rate diagnostic problem solving. This does not mean that radiologists arc infallible.
They make errors, and much of our research and that of others has focused on the
error side of the coin rather than the accuracy side (c.g., Kundel, Nodine, Krupin-
ski, 1990; Parasuraman, 1980).

19.4.4 Mammography expertise

To illustrate the importance of training and experience (practice) on the ac-
quisition of medical-image interpretive skills, we recently concluded a study of
mammography expertise in which we compared performance of experienced breast
imagers (mammographers) with radiology residents undergoing manmunography
training and mammography technologists. Our study was designed to comparc ob-
servers having differing degrees of interpretive skill reading mammograms in an
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effort to shed light on how such skill is acquired and reflected in performance. As
part of this study, in order to provide a clearer picture of how the three groups dif-
fer in experience interpreting mammograms, we obtained data about the number
of mammographic reports generated by residents and mammographers. This was
done as a way of quantifying the amount of mentor-guided image-reading expe-
rience residents received. The 19 radiology residents who were part of the study
represented mainly third-year (n = 7) and fourth-year (n = 8) residents, plus 4 fel-
lows, with mammography reading experience varying from 10 to 2465 cases over
a 3-year interval. The average reading experience at the end of resident training
was 650 cases for our resident sample. Over the same period, each of the 3 mam-
mographers read 9459 to 12,145 cases.

Figure 19.1 shows the relationship between log (base 10) cumulative number of
mammogram cases read over a 3-year interval and A l, the arca under the AFROC
(alternative free operating characteristic) curve, which is a measure of overall di-
agnostic accuracy.

This figure shows a significant lincar-regression fit of the data (R? = 0.667)
with a positive slope suggesting that interpretive-skill compelence as reflected by
A1 performance (area under the AFROC) increases directly with log case-reading
experience. This finding is strikingly similar to that found by Charness et al. (1990)
between log cumulative practice alone (deliberate practice) and current Elo rating
(chess-skill rating measure) for chess players under 40 year of age. A log scale
was used to represent the effects of case reading experience because several inves-
tigators have suggested that the relationship between practice and learning is best
expressed by a power function and this has been referred 1o as the Power Law of
learning (e.g., Newell and Rosenbloom, 1981; Anderson, 1995).

The range of case-reading experience in Figure 19.1 was from about 1 log
case readings to 4.1 log case readings, or about 10 to 12,000 cases. This range
includes two residents at the beginning of mammography training with very little
case reading experience (<1 log case) who performed at an Al of about 0.500,
where 0.000 is chance performance under the AFROC curve, and 3 mammogra-
phers with from 10,000 to 12,000 case reading experience (>4.1 log cases) who
performed at A} = 0.840. The training level of the observers is indicated by num-
bers or letters associated with the data points. Overall performance increases di-
rectly with experience, and in an orderly progression with training level. The fact
that the beginning residents’ performance is above chance at the start of mam-
mography rotation can probably be attributed to reading experience from other
specialities encountered during residency rotations as well as book reading and di-
dactic sessions on mammography. Talent is also a factor that plays a role in the
relationship shown in Figure 19.1, and shows the greatest variability in the third-
and fourth-year residents who are nearing the end of their training experience.

The main point of Figure 19.1 is that logarithmic increases in mentor-guided
mammography reading experiences are required to produce skilled mammography
reading performance, and even at the end of mammography training, residents’ in-
terpretive skills are significantly below that of their mentors and will, according
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Figure 19.1: A regression analysis of overall performance measured as A1 as a function of
log (base 10) number of cases read over a 3-year period by 3 experienced mammographers
and 19 radiology residents undergoing clinical mammography rotation. When case readings
is zero, the regression line intercepts the y-axis at 0.393 A1. With mentor-guided case-
reading training and experience, A1 performance increases. The numbers next to the data
points indicate the level of training and experience of the observers: 1 = first- and second-
year residents; 3 = third- and fourth-year residents; f = fellows; and, m = mammographers.
As indicated by the diagram below the data, competence increases with experience. Differ-
ences within levels are assumed to be due either to talent or random variation.

to this plot, require massive further amounts of rcading experience. The interest-
ing question is whether other forms of training more closely aligned to the notion
of deliberate practice, which might be achievable by providing computer-assisted
feedback as part of the training, would produce more effective learning. This makes
the computer the mentor, but as such the computer can only be programmed to pro-
vide “plausible” feedback to student inquiries since image “truth” is unknown.

19.5 What is learned from reading medical images?

The usual answer to what is learned is knowledge, which is translated into var-
ious forms of cognitive skills and decision strategies. The knowledge skills that are
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learned provide a perceptual basis for recognizing disease states in medical images
and a cognitive basis for translating image perceptions into diagnostic diseasc cat-
egorics. The details of these cognitive skills and strategies are elusive because the
experimental means of geiting at them is indirect and usually couched in cognitive
theory. This is why expert systems have not generally led to practical results. If
these skills and strategies cannot be identificd, they cannot be taught. The simplest
solution is to override the perceptual-cognitive analyses that attempt to identify the
skills and strategies and instead resort to performing massed practice on the task
that best represents the domain of expertise. It is agreed by many rescarchers from
both perceptual and cognitive camps that massed practice is the main change agent
in achieving expertisc. Thus, if the goal is to be a radiologist, then the prescription
for gaining expertise is to learn about radiology by practicing reading radiographs.
Practicing reading radiographs has to be supplemented by feedback about whether
the readings match reality in terms of diagnostic truth, and making appropriate ad-
justments (error-correction feedback). This means that training in medicine, partic-
ularly anatomy and pathology, as well as in radiology, which depends on 3D spatial
abilities, is a necessary prerequisite. So the sequence for gaining expertise in ra-
diology is: TRAIN & READ RADIOGRAPHS—SEEK FEEDBACK—ADJUST
READING TO FIT DIAGNOSTIC FACTS.

We will use examples from the research literature on radiology expertise to
compare the perceptual and cognitive approaches designed (o answer the question,
what is leamned? The general framework for problem solving in the radiology do-
main for both approaches can be summarized as:

SEARCH & DETECT—RECOGNIZE—DECIDE.

In other words, three different aspects benefit from learning: developing a
heuristic scarch and detection strategy, fine-tuning visual recognition of targets
through practice, and balancing the likelihood of being correct against the possi-
bility, and cost, of error in decision making. A recent verston of the perceptual
model is shown in Figure 19.2.

This figure shows that a global percept can be extracted from the image. This
corresponds to obtaining an overall impression of what is being displayed. From
this global percept, objects are separated and representations of disease-free areas
are segregated from representations of possible-lesion areas. The lesion candidates
arc then scanned for feature extraction, which is the initial step in hypothesis for-
mation by the obscrver. These features will work as guides to the expert, by sug-
gesting the possible diagnostic outcomes. Once this diagnostic list is generated, it
is confirmed against the features observed, which gives the expert a probabilistic
distribution of the possible diseases. The possible disease list is checked with the
objects perceived in the image, and a new scarch activated. In this way expert rea-
soning works in two dircctions, bottorn-up, by carrying out object segimentation
and feature extraction, and top-down, by checking the image elements against the
diagnostic list.
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Figure 19.2: A perceptual model of the radiology task. The model shows the information-
processing flow from the presentation of the image to diagnostic decision. initially, a medical
image elicits a global impression that flags perturbations setting up focal analysis in which
perturbed regions of the image are searched. This results in recognition of objects that are
tested for abnormality. The outcome of each test is either a positive or negative fit to the
abnormality being tested. In either case, the testing is recursive. If a positive fit is found,
the object is scrutinized by multiple eye fixations resulting in a build up of visual dwell in
the region of interest. If a negative fit is found, attention shifts back to the medical image
for a new global impression flagging another perturbed region, focal analysis searches it,
a new object may be recognized and recursive testing for abnormalities continues until the
observer is satisfied that enough evidence has accumulatied to make a diagnostic decision.
Under this model, true abnormalities may be detected and receive fixation dwell but fail to
be reported.

19.5.1 Search

A key question that drives both the perceptual and cognitive approaches is: How
is search guided by knowledge (Newell and Simon, 1972), whether scarching the
visual display or scarching the problem spacc for a diagnostic solution? The per-
ceptual approach attempts to derive answers by analysis of eye-position data that
search and test image features for diagnostic information leading to a decision out-
come. The cognitive approach attempts to derive answers from analysis of verbal
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protocol data that reveal cognitive structures embedded in propositional-statement
logic referring to image findings used to generate diagnostic solutions.

19.5.1.1 Eye movements and searching the visual-image space

Searching with the Eyes—One of the earliest attempts to study the role of
search in radiology expertise was carriecd out by Kundel and La Follette (1972).
They were interested in the evolution of expert search patterns. Kundel and Wright
(1969) had already provided evidence that radiologists frequently use a circum-
ferential search pattern when searching for lung nodules in chest radiographs.
The circumferential pattern reflects a heuristic search strategy for selectively sam-
pling information on the radiograph based on prior knowledge about the type of
target abnormality (e.g., lung nodule), or expectations about discase type (e.g.,
clearly recognizable multiple abnormalitics). The evolution of a heuristic scarch
was clearly demonstrated in a follow-up study which compared eye-fixation pat-
terns of untrained laymen, medical students, radiology residents, and staff radiol-
ogists viewing normal and abnormal chest radiographs without prior knowledge
about type of target abnormality. According to the authors, this heuristic scarch
strategy evolved mainly as a result of “... knowledge of radiographic anatomy,
pathology, and clinical medicine rather than upon formal radiologic training as
given in residency programs.” A specific form of the knowledge that guides search
is ... clear and unambiguous definitions of ‘normal’ and ‘abnormal’ ” (Kundel
and La Follette, p. 528). This knowledge comes from years of experience reading
chest radiographs to gain familiarity with features that distinguish targets of search
from their anatomic backgrounds. ]

These carly studies represent the beginnings of the perceptual approach to the
study of expertise. They are important because they point out that radiology exper-
tise is characterized by heuristic, not random, search. The terin heuristic is popular
in Al research, and books have been written arguing about its meaning and signifi-
cance in Al (e.g., Groner, Groner, Bischof, 1983). We refer to heuristic scarch here
meaning that experts choose an approach in searching a radiograph which draws
on prior knowledge and experience to form an initial hypothesis that guides search
rather than scarching in a trial and error manner without preconceptual guidance.
This strategizing is an interesting trade off that human observers choose in solv-
ing problems, in contrast to machines that typically use an exhaustive sampling of
the problem space until the target of scarch is detected. A good example of this
can be found in world champion-level chess programs which are capable of a 14-
ply full-width search, where ply refers to one move and countermove. Contrast this
brute-force search with skilled human chess players who typically look only one or
two plics deep, even though they could look 8-10 plics deep (Charness, 1981). Hu-
mans are unwilling to expend the energy required to carry out an exhaustive search
for the small amount of gain that it yields. Applied to searching radiographs, this
translates into a search strategy in which the observer attempts to uge the smallest
effective visual field to sample the most informative image areas in a minimum
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amount of time (Kundel, Nodine, Thickman, et al., 1987). An expert uses struc-
tured knowledge to adjust the visual ficld size, determine the informative arcas of
the image, and keep track of the information yield over the time course of search.

Evidence that structured knowledge guides the search of experts comes from
comparing random versus systematic-scanning (cxhaustive) modecls based on hu-
man eye-fixation parameters. This comparison shows that radiologists confine their
scanning to the lungs, in a chest radiograph, with a visual ficld between 2and 3
deg (radius), scarching for lung nodules. We speculate that gobal-image proper-
ties define the boundaries of the target-containing arca. By 10 sec the radiologists
have covered 85 percent of the lungs and detected most of the lung nodules. In the
same time, the exhaustive model has covered more of the chest area, but not more
lung arca. The search pattern of the radiologists has been shown to exhibit more
consistency with a circumferential pattern most common when searching for lung
nodules, but for more gencral search tasks consistency gives way to idiosyncra-
tric pattemns that are too complex to categorize (Kundel and Wright, 1969). These
findings suggest that scanning patterns of radiologists are not random but rather
dependent on what the radiologist perceives to be the task, and what is seen during
the course of scanning the image.

19.5.1.2 Verbal protocols, thinking out loud and searching the cognitive-problem
space

Searching with the Mind—The cognitive approach has downplayed the visual
component of radiology expertise and focused on the observer’s cognitive evalu-
ation of the radiographic display. The approach is similar to that used by Chase
and Simon for studying chess in that a perceptual phasc and a cognitive phase are
separately tested. As an example, we use the experimental protocol of Lesgold,
Feltovitch, Glaser et al. (1981, 1988). First the obscrver is given a brief view of the
radiograph (2 sec), and asked what was seen with experimenter prompts to test the
Jimits of the initial perceptual phase. Second, a verbal protacol is elicited by hav-
ing the observer read the radiograph while “thinking out loud.” This is followed
by a formal dictated diagnostic report. Finally, the observer is given the patient
history, re-cxamines the radiograph, and if necessary makes modifications in the
diagnostic report. The goal of the perceptual phase is to identify how the stimulus
is initiatly represented and schematically encoded within the problem space and
to get at tentative hypotheses. The goal of the verbal protocol phase is to identify
reasoning paths to a diagnostic solution. The reasoning step was modilied in the
experimental protocol by dropping the initial perceptual phase and expanding the
verbal protocol phase to include having observers circle key arcas on the radio-
graph that were considered critical in the reasoning path to diagnosis.

Lesgold, Feltovitch, Glaser et al. studied expertise in chest radiology by com-
paring verbal protocols of radiology residents at various levels with those of ex-
perienced radiologists. Analyses of verbal protocols led to a two-stage model of
the diagnostic process. In the first stage a perceptual decision is generated. This
yields a probabilistically-weighted sct of perceptual features that diagnostically
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characterizes the radiographic image leading to a single outcome. The initial stage
is followed by a decision-making analysis of the perceptual features within a cog-
nitive framework of diagnostic problem solving (see Selfridge, 1959). The first
stage depends heavily on the observer’s schematic knowledge in the form of an
anatomic representation—a map of chest features. The second stage depends on
cognitive testing of perceptual features that are translated into radiologic findings
used to feed diagnostic reasoning chains. Radiology expertise was reflected by a
richly structured anatomic schema mapping x-ray features to normal anatomy. This
rich schema provides the basis for detecting “left over” features signaling and lo-
calizing possible abnormalitics on new chest x-ray image instances. A schema is
called up faster in experts than trainees giving experts a faster start in searching the
radiograph and a more accurate roadmap of abnormal features likely to trigger a
decision-making rule leading to a diagnostic solution.

The skill component of expertise was demonstrated by the fact that experts ex-
ceeded trainees on all quantitative measures derived from protocol analysis (e.g.,
more findings, more and bigger clusters of findings, more relationships among find-
ings, and more inferential thinking using findings). Experts were also better than
trainces at recognizing and localizing perturbations in normal anatomic structures
that signaled pathology. Analysis of protocol statements emphasized the problem-
solving flexibility of experts in gencrating schemata to fit specific cases, holding
them tentative and accepting or rejecting them only after rigorous testing. The ex-
perts seemed to be able to generalize the x-ray findings from specific cases to
idcalized patterns of disease by drawing on mental models of patients’ anatomy
and medical history. Trainces showed less flexibility, generating schema so tightly
bound to perceived x-ray findings that they often led to false solutions. For Les-
gold, Feltovitch, Glaser et al., the schema is the key to successful problem solving
and . .. acquisition of expertise consists in ever more refined versions of schemata
developing through a cognitively deep form of generalization and discrimination.”
(p- 340). For most radiographic diagnoses, a shallow level of cognitive proccss-
ing will suffice, and may even be more accurate than decper reasoning (Proctor
and Dutta, 1995). It is only with complex diagnoses that the advantage of deep
cognitive processing becomes apparent. This deep form of cognitive processing
comes about as a result of extended practice that makes expertise in radiology
possible. Raufaste, Eyrolle, Marine (1998) expand on this conclusion by testing
what they call a “pertinence generation” model of radiology diagnosis. Protocol
analysis of 22 radiologists’ interpretations of two “very difficult” cases revealed
two qualitatively different kinds of expertise, basic and super. The super experts
were distinguished by increased pertinence in the interpretation of diagnostic find-
ings. Pertinence generation refers to linking visual signs (radiologic findings) to
diagnostic inferences which increases with level of expertise. The cognitive pro-
cessing behind pertinence generation is schema driven but the reasoning chain is
more deliberate and reflective in super experts than basic experts or radiology res-
idents. Super expertise is not simply acquired through more and more experience.
Rather, at least for Raufaste, Eyrolle, Marine (1998), super expertisc is the integra-
tion of reading experience with teaching and research experiences. These provide
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a basis for integrating understanding about how radiologic findings arc translated
into plausible (pertinent) diagnostic hypotheses and logically tested for pathologic
process leading to a diagnosis in much the same deliberate manner as deductive
reasoning is carried out in a scientific experiment.

19.5.2 Visual recognition—features vs patlerns vs objects

We have tatked a lot about the importance of schemata in radiologic problem
solving. Neisser (1976) built his theory of cognition around the concept of an-
ticipatory schemata. According to his view, perception is a constructive process
of discovering what the visual world (or image) is like and adapting to it. This
discovery and adaptation process is, in the most general scnse, the goal of visual
information processing. It is possible to view radiographic diagnosis as a construc-
tive process. For Neisser, the perceptual cycle is elicited by a schema that directs
visual exploration to sample objects (information) and fecd back the results thus
modifying and enriching the initial schema. A schema for Neisser defines plans for
perceptual action and readiness to take in certain kinds of perceptual structure. If
an evoked schema is to be effective for guiding scarch, it must be gencrated carly
in problem solving. How docs the initial visual input from the radiograph stim-
ulate the formation of a schema? After initial schema formation, what role does
visual recognition play in evaluating targets detected during focal scarch? What is
recognized, features, patierns, objects or what? Both perceptual and cognitive ap-
proaches have focused on features as the basic unit of cognitive processing. This
leads to a bottom-up analysis by synthesis of the object to be recognized. Both
approaches also talk about the importance of patterns and chunking of informa-
tion which are higher-level perceptual or cognitive structures. David Marr (1982)
pushed visual recognition to the top-down object-representation level, and this has
been expanded by Ullman (1996). The box that one gets into in postulating models
of the visual recognition process is the chicken-and-cgg dilemma: whether the ob-
server first detects a distinctive part (feature) and builds up the object percept; or,
whether the object percept is globally recognized, holistically, without intervening
building-block steps. This is a critical question for cognitive modeling underlying
visual recognition because we build error-correcting feedback based on our theory
of the information-unit building blocks. Thus, if our theorctical building blocks are
featurcs, we train by feeding back features of object to-be-recognized. And how
do we confirm that the features are truly the building blocks behind visual recogni-
tion? We ask the observers to think out loud and they say they use FEATURES to
recognize the object. This circular logic is prevalent in the theoretical accounts of
both perceptual and cognitive approaches used to study visual recognition that are
reviewed below, and the answers they gencrate. Different experimental methodolo-
gies have been used to try get at the answers to these questions, but visual recogni-
tion still remains a puzzle.

Flash experiments. One answer to the visual-recognition puzzle comes from
so-called flash studies in which radiographic images arc presented bricfly (e.g.,
200 ms, the typical duration of an ey fixation) using a tachistoscope (Kundel and
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Nodine. 1975; Gale, Vernon, Miller e al.. 1990). Several studies have asked how
much can be seen in a single glance by tachistiscoptically presenting radiographs
to radiologists and asking for diagnosis. In 1975, Kundel and Nodine identified
a key skill that characterizes radiology expertise. They found that in 200 ms ex-
perienced radiologists could accurately recognize 70 percent of the abnormalities
detected under free search of a chest radiograph. Many of the abnormalities rec-
ognized in 200 ms were large, high-contrast targets (e.g., mass, pneumonia and
enlarged hearts) which significantly altered the appearance of normal anatomic
structures in the chest x-ray image. Small or low-contrast targets (e.g., lung nod-
ule, histoplasmosis) were not detected in 200 ms. This led to the interpretation that
a global response (akin 1o Gregory’s “object hypothesis.”" 1970) involving input
from the entire retina provides an overall (schematic) impression of the radiograph
that initiates focal search to test image perturbations leading to a diagnostic deci-
sion (Kundel and Nodine, 1983). The initial grasp of the visual scene is compared
against schemata in which stored knowledge representations and deviations from
expectations of a normal chest pattern are spatially encoded and flagged, all within
the average duration of a single eye fixation. Kundel and Nodine (1983) showed
that differences between radiologists’ and laypersons’ schemas of radiographic im-
ages are refiected in their drawings of what they saw. The drawings by laypeople,
who did not recognize what they were looking at, consistently depicted background
features. The drawings by radiclogists, who did recognize what they were looking
at, depicted image objects (see Figure 19.3). Interestingly, when looking at u hid-
den figure (puzzle-picture of the head of a cow), unfamiliar to both groups, the
drawings leading up to recognition consistently focused on background features
surrounding the hidden object for both groups. Only after the cow was recognized.
presumably as the result of a match 10 an appropriate cognitive schema, did the
drawings depict the hidden object (see Figure 19.4). Correlated with shifts in focus
of the drawings from features to objects was a corresponding shift in focus of eye
fixations from background features to object centers.

Similar findings have been found for detecting breast lesions (Mugglestone,
Gale, Cowley er al., 1995). For example, Mugglestone, Gale, Cowley et al. com-
pared mean overall performance (Az area, that is the area under the Receiver Op-
erating Characteristic or ROC curve), mean percent correct recall and mean per-
cent return to screen of 9 radiologists under flash (200 ms) and unlimited viewing.
They found overall that performance was poorer under flash than unlimited view-
ing (0.518 vs 0.700, respectively), primarily attributable to missing subtle abnor-
malities that failed to standout against mixed and dense breast-parenchymal back-
grounds compared to lesions in fatty breast backgrounds (49% vs 31% for flash and
unlimited viewing respectively). The lower overall performance for breast images
compared to chest images was primarily due to the interaction of the conspicuity of
the abnormality with anatomic background structures in the image. Inconspicuous,
solitary findings in both breast and chest images seem to lack perceptual saliency
in flash viewing. It may also be that lack of anatomic landmarks in breast images
may fail to provide a distinctive anatomic schemata to facilitate pattern recogni-
tion compared to chest images which are rich in anatomic structures. Reflections
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Figure 19.3: A silhouette drawing of a chest x-ray image containing a right-upper-lobe
pneumonia (left), and the actual chest x-ray image containing the abnormality (right). The
silhoeutte drawing was made by an experienced radiologist to illustrate the major finding on
the chest x-ray film which was used in a flash study of image perception (Kundel and Nodine,
1975). The drawing depicts the abnormality in schematic fashion which may reflect how an
experienced radiologist's cognitive schema encodes the chest-x-ray image when viewed in
a 200 ms. flash presentation. The actual chest x-ray image was used in the experiment.
in flash viewing, 30 percent of the observers gave an accurate diagnosis. In free viewing,
diagnostic accuracy increased to 50 percent.

of these schemata are clearly illustrated in the drawings of chest-disease patterns
shown in silhouette form in Kundel and Nodine (1975).

This would mean that the initial global impression for a breast image would
key on conspicious features rather than anatomic landmarks, and that the global
impression would be less effective in guiding focal search of the breast image.
It is doubtful that the global impression can detect microcalcifications, and this
was confirmed by Mugglestone, Gale, Cowley e al. (1995). Maybe this is why
we observe that mammographers typically make two passes over a case that they
are reading, the first to gather an overall impression and check for masses, and a
second slow deliberate scan with a magnifying glass to catch microcalcifications.

Decision-time experiment. A second answer to the visual-recognition puzzie
comes from a decision-time study of expertise in mammography which shows that
experts are significantly faster and more accurate in detecting breast lesions than
less-expert observers (Nodine, Kundel, Mello-Thoms, et al., 1999). The initial de-
tection, localization and classification of true lesions by experts occurred within
15 sec on average. This is much longer than flash viewing but in this case deci-
sion time included search time scanning both craniocaudal (CC) and mediolateral
obligue (MLO) breast images for lesions, and detection plus localization time using
a mouse-controlled cursor. The speed and accuracy of expert performance suggests
1o us a rapid global image impression that cues efficient focal search and supe-
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(b)

Figure 19.4: A puzzle-picture of the head of a cow (top, Figure 19.4(a)}, and a longitudinal
ultrasound image of the abdomen showing a dilated bile duct and the head of the pancreas
(top, Figure 19.4(b})). These images were shown to 6 observers, 3 radiologists and 3 laypeo-
ple. The outline drawings under the pictures show what observers saw after 20 sec viewing.
Observer A in Figure 19.4(a) (lower left) reported that he saw a “cow’s head. Observer B in
Figure 19.4(a) (lower right) reported that he saw an abstract picture of a “fish.” The outline
drawings below the picture in Figure 19.4(b) show what the observers saw after seeing the
ultrasound image. Observer A in Figure 19.4(b) (lower left) was a radiologists, and reported
seeing a “dilated common duct” from a pancreatic mass. Observer B in Figure 19.4(b) (lower
right) was a layperson, and reported seeing an “aerial photograph.” The drawings suggest
that visual concepts of what observers thought they saw are driving image perception.
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Figure 19.5: Speed-accuracy relationship as indicated by 4, the index of detectability,
as a function of decision time for mammographers, residents and technologists performing
a combination mammography screening-diagnostic task (Nodine, Kunde!, Melio-Thoms et
al., 1999). Overall performance as measured by ¢’ which is the normal deviate, z(TP), of
true positive fraction — z(FP), of the false positive fraction, increased for mammographers
and to a lesser extent for residents. Overall performance decreased below chance (d' =
0) for technologists, meaning that false positives outnumbered true positives. Differences
in performance were hypothesized as primarily due to lack of perceptual learning, which
limited object recognition skills, causing competition between true malignant lesions, benign
lesions, and normal image perturbations.

rior visual recognition of lesions. Initial impression, search and evaluation were
more drawn out in observers with less expertise, and breakdowns in performance
resulted in fewer true positives and more false positives. Figure 19.5 shows the
speed-accuracy relationship related to mammography expertise.

Eye-position experiments. A third answer o the visual-recognition puzzle
comes from eye-position studies of expertise in mammography (Figure 19.6) which
also show that experts are faster and more accurate at detecting breast lesions (No-
dine, Kundel, Lauver et al., 1996; Krupinski, 1996). Using time to hit (TTH, search
time to fixate a lesion) as the dependent variable, these studies show that experts
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Figure 19.6: Scanning patterns of a mammographer (upper left), resident (upper right),
layperson (lower left), and the simulated observer (lower right) to a digital mammographic
image containing craniocaudal (CC) and mediolateral oblique (MLO} projections. The dura-
tion of the scan was limited to 16 sec in this comparison. The center of the mass in the CC
view (left), and MLO view (right) are indicated by circles. The mammographer hits the mass
in both views within 2 sec. The resident fixates the mass in the CC view in 1 sec, but takes
almost 16 sec to fixate the mass in the MLO view. The layperson comes close to fixating the
mass in both views. The simulated ohserver performs a random walk for 16 sec ultimately
fixating the mass in the MLO view, but missing the mass in the CC view. The simulated ob-
server scanpath uses saccade length and gaze duration data from human scanpaths. This
results in fixations clustering in several regions of the display, but these clusters are inde-
pendent of image content, since fixation x, y locations were randomly generated. Further
details can be found in Nodine, Kundel, Lauver ef al. (1996).
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(experienced mammographers) find lesions faster than observers with less expe-
rience and training. Nodine, Kundel, Lauver ef al. found that mammographers
searching a two-view mammographic display containing CC and MLO images
first fixated a mass that was reported correctly with an average TTH = 2.69 sec,
whereas radiology residents required an average TTH = 4.74 sec to detect a cor-
rectly reported mass. Support for the view that the search strategy of experts was
not random comes from a comparison of their TTH data with that of simulated
observers that searched the breast image randomly.

Interestingly, the simulated observers took an average TTH = 4.67 sec which
meant random fixations first hit an arca containing a true mass after about the same
search time as radiology residents. However, human observers failed to fixate only
2 percent of areas containing true masses whereas simulated observers failed to
fixate 44 percent of areas containing true masses. These comparison data provide
strong evidence that speed and accuracy of expert performance is tied to the rapid
generation of a diagnostically-useful initial schematic representation that is effec-
tive in guiding search. We speculate that what experts recognize at first glance are
unexpected oddities generated from a global characterization of the image that are
flagged as regions to-be-searched by focal scanning. Thus, the goal of the initial
global problem representation in radiology is not to find a target per se (because
there are too many possibilities), but rather to find something odd about the im-
age on which to focus the search strategy. Expertise comes into play in charac-
terizing what in the image is odd. To recognize this the observer must first know
what is not odd, or what is “normal.” Evidence that the visual recognition of ex-
perts is tuned to differentiate odd or uncharacteristic features signalling pathology
from clinically normal features comes from Myles-Worsley, Johnston, Simons et
al. (1988). These odd features that occur in x-ray images have been called “per-
turbations” implying that their presence in the image disturbs the observer’s image
representation (schema). They found that as radiologists develop expertise in rec-
ognizing clinically-relevant abnormalities, they tend to selectively ignore normal
feature variants, suggesting that detection of perturbations becomes more refined.
Both perceptual and cognitive approaches agree that one of the most important
signs of expertise is speed and accuracy of recognizing globally whether an image
is normal or abnormal. This preceeds detailed scarch and analysis which leads to a
specific diagnosis, and even this phasc is faster in experts.

Prohability-analysis experiments. A final answer to the visual-recognition
puzzle comes from probability analysis of error paths in breast lesion detection
(Mello-Thoms, Nodine, Kundel, 1999). What this analysis shows is that the initial
decision made when examining a pair of breast images (CC and MLO views) sig-
nificantly influcnces any subsequent analysis on that image. Namely, when the first
decision is a true positive then the probability that the observer will find the same
lesion on the other view is very high, with experts being significantly bettcr than
residents or technologists. Furthermore, on average, in this senario, the observer
will make significantly fewer mistakes (false positives or false negatives) than if
the first decision is incorrect (false positive). Moreover, when the first decision is
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incorrect, then the probability that the observer will find the true lesion, when one
is present, is very small. Thus, beginning with error seems to promote other er-
rors, dragging performance down. Interestingly enough, when the first decision is
a false positive, in an image pair that has a true malignant lesion visible, on average
the observers will make significantly fewer errors than when the first decision is a
false positive in a normal image pair. In fact this difference can be quite staggering
depending on the level of expertise. Experts will make about 8 times more errors
when the first decision is a false positive on a normal image than when it is a false
positive on an image with a malignant lesion present, whereas residents will make
about 5 times more errors and technologists will make only about 2 times more
errors. Maybe this is because of the confidence that experts have in their decisions,
or because the image perturbation that led the expert to make the initial false pos-
itive decision on a normal image repeats itself in other areas of the image, thus
misleading the expert into making other incorrect decisions. With residents and
technologists this occurs to a smaller degree, probably because these two groups
generate more errors on a regular basis, that is, they are more consistently fooled
by image disturbances. In other words, the presence of a true lesion, even when the
true lesion is not reported by the observer, seems to work as a perceptual bias for
the number of false positives made.

Both the perceptual approach and the cognitive approach stress the importance
of a rapid initial mental representation of the problem. Whether this is referred
to as a schema or cognitive structure makes no difference because both percep-
tual and cogpitive approaches are referring to representations of the same process.
The perceptual approach uses visual-feature mappings, and the cognitive approach
uses logical mle-based mappings to represent problems and generate solutions. The
flash studies show that experienced radiologists have clear and unambiguous defi-
nitions of “normal,” from which fast accurate recognition of deviations are globally
detected.

19.5.3 Decision making

Evidence for differences in decision making as a function of level of expertise
comes from two sources. First, from eye-position studies of observers who make
perceptual errors in radiology, and second from our study of the speed-accuracy re-
lationship in developing mammography expertise (Nodine, Kundel, Mello-Thoms
et al., 1999).

Eye-position studies have identified three kinds of error in lung nodule detec-
tion: search errors, detection errors, and interpretation errors. Two-thirds of errors
are divided between detection and interpretation, not search (Kundel, Nodine, Car-
mody, 1978). Visual dwell data show that missed targets (breast or chest lesions)
receive as much if not more visual attention as do recognized, truly-positive targets
(Krupinski, Nodine, Kundel 1998). This means that observers look at the missed
target long enough to report it, but decide not to report it. Thus, over 60 percent
of missed targets secm to be cognitively processed, as evidenced by both fixation
clustering and prolonged visual dwelling on the missed target, yet observers fail
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to find sufficient evidence to report the object they evaluated as a target candi-
date. Analysis of eyc fixations and visual dwell provides an information-thcoretic
account of the causc of errors of omission, false ncgatives, in radiology. Unfor-
tunately it is difficult to disentangle whether the cause of the omission etror was
faulty recognition or decision making. Errors of commission, false positives, are
also associated with prolonged dwell times that are equivalent to those found for
true positives.

To shed light on this we looked at overall performance (arca under AFROC)
as a function of the time course of viewing mammographs by observers represent-
ing different levels of mammography expertise (Nodine, Kundel, Mello-Thoms et
al., 1999). We measured decision time, which is equivalent to what experimental
psychologists refer to as “reaction time” (Posner, 1986), and related it to deci-
sion outcome using a combination mammography screening/diagnostic task. We
have already reported above that experts werce faster and more accurate perform-
ers, and that this is attributed to a well-developed prototypic normal breast schema
that facilited the recognition of abnormal deviants correctly evaluated as malig-
nant lesions. Perhaps the most interesting finding coming from this experiment is
not the speed-accuracy relationship of experts, but rather that of the least expert
in mammography interpretation, the mammography technologists, who had nei-
ther training nor experience reading mammograms. One technologist stands out
in particular because she took the task literally and called every visible blob on
every case. Her decision criterion for deciding that a malignant breast lesion was
present was: Do T see a blob? She called 193 malignant lesions on 150 breast
images of which 50 (26%) were correct. Her strategy appeared not to be driven
by a schematic representation that maps anatomic knowledge with pathological
knowledge. Rather, her strategy was driven by a simple blob-detection algorithm.
In comparison, an expert (mammographer) called 97 malignant lesions of which
52 (54%) were correct. Thus, the mark of expertise is not how many correct lesions
are recognized, but rather the balance between reporting true lesions and minimiz-
ing reporting false lesions. This calls on highly-tuned perceptual discrimination
and differentiation which is learned through massive amounts of image-reading
experience supplemented by feedback.

19.6 Conncctionism—another approach to information processing

The perceptual approach and the cognitive approach to information processing
deal with the reasoning process leading to decision making in very different ways.
In particular the cognitive approach attempts to create 2 set of rules that will guide
perception, evaluation and decision making. A shortcoming of this method is that
different experts in the same field may have very differcnt reasoning processes,
as shown in Lesgold, Feltovitch, Glaser et al. (1988), Raufaste, Eyrolle, Marine
(1998). This imposes tremendous difficultics to modeling the decision process,
because input from each expert has to be carefully weighted and placed in the
rcasoning steps of a model that a computer can execute.
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The cognitive approach can be scen in the first generation of Al systems,
based upon predicate logic, which implied that all of the conclusions had to be
drawn from a set of logical statements that basically corresponded o a game-
playing scheme. Even the attribute-based representation systems, which allowed
for broader mappings than the predicate logic did, used some sort of rule at each
step to arrive at any conclusion. This was particularly true regarding decision trees.
In predicate logic and attribute-based representations, sets of rules are designed
based upon experts’ verbal explanations of their analyses of medical images. This
approach, however, impaired the use of artificial intelligence in problems for which
no such set of rules could be consistently derived. Nonetheless, this does not im-
ply that systems with this kind of representation are doomed to failure. There are
obvious applications in which such a set of rules can be derived, and the problem
is thus successfully solved.

An interesting point that can be made regarding these knowledge representa-
tions is, are human intemal representations like these? That is, do humans use some
logic- or attribute-based approach to solve their problems? Furthermore, these ap-
proaches seem to indicate that a serial structure is necessary, because each new
conclusion can only be drawn based upon the answer to the previous question.
This serial approach to brain function has been contested (Barrow, 1996). It has
been shown that this approach maps the brain to a universal turing machine, which
leads to restrictions regarding the speed of information processing, the robustness
of the system and its lack of flexibility to deal with complex decision making tasks
such as medical image interpretation (Dawson, 1998). Moreover, if indeed percep-
tion and cognition are based on a set of rules, shouldn’t experts have a similarly
structured set of rules? But that is not what one sees in practice, which may indi-
cate that, although certain processes may be dealt with by the brain in this way,
not necessarily all processes are analyzable in this fashion. Thus another type of
knowledge representation must be considered.

The perceptual approach deals with the creation of an internal map that is based
upon features that were visually extracted from the scene. This approach does not
need to infer what this internal map looks like, for it only looks at the sequence of
steps in and out of the internal map. It seems rational to ask an intelligent system to
do this, namely, to build its own internal representation based upon a sct of percepts
extracted from the problem and then use these features to process the information
by running through the internal map and producing a decision.

Thus, a third approach to information processing is created. Namely, it is based
on the processing capabilities of the human brain, with its parallel weighted con-
nections, that receives input and produces output, although the “how” is not en-
tirely clear. This approach is called conncctionism, and it is used by a fast growing
branch of Al called artificial ncural networks (or ANNS). In this chapter only onc
type of ANN will be considered, namely, the multi-layer perceptron (MLP), which
is a multi-layer feedforward network (Haykin, 1994).

One of the major drawbacks with using the connectionist approach is that it
is not clear which elements from the input patterns have a more significant con-
tribution to the classification process. This is often called the credit-assignment
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problem, because the “thinking” process of the network is done at an internal (and
unobservable) level, in the hidden neurons, and no insights can be gained into what
actually helped the nctwork achieve the final result. Furthermore, even if the net-
work derives a probabilistic distribution for the data, it cannot tell the user which
distribution it is, which does not help the human understanding of the problem,
although some methods have been recently developed to extract knowledge em-
bedded in ANNs (Tickle, Andrews, Galea et al., 1998).

Interestingly enough, this seems to be the way that the brain of a human ex-
pert works. For example, one may ask a distinguished radiologist how he or she
arrived at a particular diagnosis, but often times they will not be able to list all
of the steps that they took, or which factors weighted more heavily than others to
generate a conclusion. Obviously if the problem is simple (for example, if a large
malignant lesion covers a portion of the breast) then one has no doubts about what
generated the particular diagnosis, but in these cascs the ANNG also perform quite
well, because the weight of the evidence in one dimension (in this casc, size) is $0
overwhelming (Found and Muller, 1996). These are often not the cases in which
one is interested. The secret for good performance, particularly in tasks like cancer
detection, lies in the subtle lesions, in the early findings that may prevent a starting
cancer from taking over.

Nonetheless, acquiring expertise in radiology requires massive amounts of
practice, which is a problem for the novice radiologist or for a radiology traince.
As previously discussed, performance improves as a function of deliberate prac-
tice, that is, of self-motivated practice, as long as fecdback is available to correct
errors. Most of the time it is not possible to use a human expert to provide this
feedback to inexperienced radiologists. In this sense the use of intelligent systems
to aid these practitioners seem quite logical. The intelligent system can work as an
educated second opinion, or by providing feedback to the observer about specific
regions in the image.

In this section we will briefly discuss intelligent systems and artificial ncu-
ral networks, as well as examine expertise in the context of ANNs. We will also
discuss how to compare the performance of human experts with that of their artifi-
cially intelligent counterparts.

19.6.1 What is an intelligent system?

We will consider that an intelligent system is one that has agents (that is, ele-
ments) that allow it to successfully interact with its environment (Russell, 1996).
Note that the definition as stated uses a measure of performance to determine if the
syslem’s actions in the environment lead to success or failure. It also assumes that
knowledge about the environment is available to the system in a format that the
system can not only usc but that covers the universe of the domain of the problem.
In other words, this knowledge is sufficient to allow the system to respond to its
environment in an appropriate way (Partridge, 1996).

The interaction between an intelligent system and its environment as described
above corresponds in psychology to a cognitive process (Fox, 1996), which is ap-
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available processes and stores network's
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thus unacessible.

Figure 19.7: A generic representation of a multilayered perceptron. This network archi-
tecture is divided into 3 parts: the input layer, which receives information provided by the
environment; the hidden layer (s), which processes that information; and the output, layer
which transmits the network’s decision to the environment.

propriate, considering that learning is one of the hallmarks of intelligence (Russell,
1996). In other words, if a machine can learn, then, in principle, it can become in-
telligent. In this context intelligence refers to the ability of freeing itself from its
creator, namely, from making up its own hypotheses and assumptions about the
environment, even if these contradict the original hypotheses that the system was
taught (Russell, 1996). In the domain of radiology expertise, this means that the
system should be able to find its own unique interpretation for a given image in-
stead of trying to match it to the ones that were used to teach the system.

Only one type of ANN will be considered here, the multi-layer perceptron
(MLP). This is a very powerful network architecture that has been proven success-
ful in a variety of contexts (Haykin, 1994). A generic representation of the MLP
can be seen in Figure 19.7. As shown, this network architecture is divided into 3
parts, namely, the input layer, which receives the information provided by the en-
vironment, the hidden layer(s), which processes this information, and the output
layer, which relays the network’s decision to the environment.

Multi-layer perceptrons can learn in two different ways. In supervised learning
the system is presented with a set of examples and the truth table, that is, a list that
maps each example (o its correct calegory. Although this method has some obvious
advantages—namely, feedback is immediate, because the system instantly knows
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if it succeeded or if it failed—it nonetheless poses a problem in situations where
no such truth table exists, that is, when there is no check on reality. In these cases
unsupervised learning may be the best option. This learning technique allows the
system to create its own map bctween “truth” and the examples presented to it.
Thus, even though this is a more flexible type of learning, it has the drawback
that many different classes may be created to represent objects belonging to the
same category if the features that characterize these objects are not very similar.
For example, many different classes could be created to represent masscs in the
breast, because these can be stellate, more or Icss dense, etc. Note that in this case,
learning occurs by agreement, as opposed to by matching with a truth table as in
the supervised leaming case.

The process of presenting an ANN with a set of examples and letting it form its
own represcntational map is called training. When previously unseen examples are
presented to the network, its performance is judged by measuring how much and
how well it lcarned. This process is called testing. If ils responses ar¢ appropriate
we deem that it learned to solve that particular problem. In this sense the leam-
ing process can be seen as a mapping between the examples domain, which offers
discrete sampling about the (possibly) continuous multidimensional nature of the
problem, and hypotheses formation, which allows the system to decide which ac-
tion to take in the presence of a certain input. Note that in practice if the network
performance during testing is below acccptance standards, it will have to be re-
trained. This process is equivalent to finding out that at the end of residency the
performance of the residents is significantly below that of their mentors, and then
attempting to improve their performance by exposing them to more cases.

Artificial neural networks have been successfully used in many areas of radiol-
ogy, such as to predict breast cancer invasion (Lo, Baker, Kornguth ez al., 1997), to
find calcifications in mammograms (Nishikawa, Jiang, Gigeret al., 1994), to detect
signs of lung cancers in chest radiographs (Lo, Lin, Frceman ef al., 1998), and to
differentiate benign from malignant Jesions in mammograms (Zheng, Greenleaf,
Gisvold, 1997).

Despite this success, it is important to consider that in most of the applications
of ANNs to medical image reading, the sclection of the features that will guide
network diagnosis is done in onc of two ways. Either image features and patient
data arc used to represent the problem to the network, or image parameters are
extracted by some preprocessing step. Unfortunately, each of these representations
has drawbacks. In the first case a human specialist has to search the image looking
for the appropriate parameters (cxamples of such features could be the presence of
calcification clusters, breast density, etc.), which may not be viable if the systcm
is to be used to aid novice radiologists or to train residents, because neither of
these groups may be completely capable of deriving such predictive features from
the image. Furthermore, if onc needs a specialist to derive the predictive image
featurcs, then onc may as well use that specialist to read the image itself, and thus
skip the ANN altogether.

In the second case, exhaustive search of the image is donc in order to derive the
features for the ANN. As shown elsewhere (Kundel, 1987) experts do not scarch
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like this, but rather, use their prior knowledge (acquired by experience) to guide
their search in a heuristic fashion, thus avoiding spending time looking in regions
of the image where lesions are unlikely. One can arguc that this procedure prevents
total coverage of the image, and thus should increase the rate of false negatives,
resulting from the presence of lesions in parts of the image where the expert failed
to look. But this does not seem to be the case (Kundel, 1987). Experience seems
to allow the experts to mentally generate a probabilistic map of the likelihood of
lesions in different parts of the image. In taking information from this probabilistic
map, the expert is in fact optimizing search using as constrains total time spent
reading the image and the value of finding true lesions against the cost of missing
a true lesion. Studics have shown (Nodine, Kundel, Mello-Thoms et al., 1999) that
experts are very fast and accurate in finding pairs of lesions given two mammo-
graphic views of the same breast, whereas residents and radiology technologists
lag far behind. Furthermore, because of their lack of formal training, radiology
technologists do not seem to build such probabilistic maps, but rather use what we
called a “shot-gun strategy.” They exhaustively examine the image and call every-
thing that looks blob-like. As a consequence, the same criterion for lesion detection
is used everywhere in the image, despite the local changes in anatomy (and thus
in contrast appearance attributable to x-ray transmission), and the different like-
lihoods that a lesion will develop in different regions of the breast (Haagensen,
1986). This generates many incorrect decisions.

One of the biggest problems with artificial intelligence (Al) is its inability to
deal with the incorporation of prior knowledge in the formation of new hypotheses.
Note that this hinders the search process, because the machine cannot build the
probabilistic map that experts do. This forces the search to be performed using
a “shot-gun” strategy, which generates many false positives, and the results may
resemble the exhaustive “blob-detector” radiology technologists described above,
which is not acceptable for a system that aims to help radiologists.

19.6.2 Expertise in the context of artificial neural networks

Learning is an important part of improving performance in a decision making
task such as mammography. Nodine, Kundel, Mello-Thoms et al. showed that hu-
man performance in reading mammograms improves as a function of individual
talent and the number of mammogram cases read. Furthermore, we showed that
experts have seen the largest number of cases, and also that their performance is
significantly better than that of either novices or laypersons. In other words, we
showed that human performance improves as a function of practice.

Itis very difficult to use this measure to characterize expertise in artificial neural
networks, primarily because in the vast majority of ANNs learning only occurs dur-
ing the design part (a.k.a. training). This implies that, once the system has learned
the input-output mapping with the examples provided to it, up to a desirable error
level, it does not learn anymore. It is important to mention that this limitation is no
fault of the theory of ANNs, but rather it is related to most of the algorithms cur-
rently available to train them. It is not impossible to develop a learning algorithm
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that permits the network to learn continuously, and in fact such algorithms do exist
(e.g., the adaptive resonance algorithm). The problem is that in order to allow the
network to continuously learn one has to allow for the network structure to be flex-
ible, that is, one has to permit the network architecture to change as new classes are
learncd. In mathematics this is called the “stability-plasticity dilemma,” because a
compromise exists between how much the network architecture can change and
how these changes may affect the network’s stability. This problem affects all of
the existing algorithms to train ANNs, and it does not have a closed-form solu-
tion. Thus, the price that onc pays for keeping the network learning is the risk of
cither making it so big that it takes a very large amount of time to generate an
outcome, or having it become unstable. As a consequence of this, the most widely
used algorithms do not allow the network to lcam anything new, once it has been
trained.

This impacts the network’s performance in two different ways. Namely, the
level of error generated when the network was tested in the laboratory or else-
where represents the best level of error that the network is ever able to achieve,
primarily because the testing samples were drawn from the same population that
the network was trained on and under the same conditions (i.c., film quality, image
acquisition setup, acquisition technique, digitization, etc.). Second, if the condi-
tions are changed—for example, if an intelligent system is being used for cancer
detection and the incidence of cancer in the population it addresses changes for
some reason—then the majority of ANNs cannot adapt on their own to the new
conditions, unless they are retrained laking into account the new situation. This is
undesirable, considering that finding the appropriate set of parameters for an ANN
may take anywhere from a few hours to a few months or even years.

One important point to consider at this step is that there is a minority of artificial
systems that can respond to perceived changes in the environment on their own. An
example of this would be the adaptive resonance theory neural network, which is
an unsupervised leaming network capable of creating new nodes to represent the
new classes it encounters at any point in time, during or after training. Although
this is a great advantage as far as adaptation goes, it is important to remember that
it too suffers from the drawbacks of the unsupervised learning systems, namely,
it may create many unnecessary classes in response to the variations in the input
patterns.

A consequence of the fact that the ANNs can only learn during training is that
it possesses a static knowledge, whereas the human experts possess a dynamic
knowledge. All that the network knows today it will know tomorrow, but no more,
although the human experts will continue to acquire knowledge. This greatly im-
pacts the nature of expertise that the ANN possesses, namely, it is a different kind
of expert than the humans, because its expertise is unchanging.

At this point, an important question remains: how does one measure the per-
formance of an ANN? And, how docs onc contrast it with the performance of the
human experts?

A methodology to measure the performance of an Al system versus the per-
formance of human observers was proposed in Haynes (1997). In this case the Al
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system would perform a task (reading a set of mammograms, for example) and hu-
mans with different experience levels would also perform the same task. A panel of
expert judges would then rank performance, placing on the top of the list the bet-
ter performances (more true lesions found, less mistakes, etc.) and on the bottom,
the worse. The worst performance gets assigned a low score, and the best a high
score. Observers with the same level of experience have their scores averaged, so
that only one score represents each level of experience. A “skill function” is then
plotted, which draws observer’s experience versus the scores they received. Note
that in this case the Al system is considered to be another observer. Confidence
bands are also derived. Thus, to estimate the level of performance of the Al system
versus the human experts, one can look at the plot and compare the Al’s perfor-
mance with that of the human observers that are closer to it. In this way one can
make assessments such as “the ANN performed at a level of an observer with x
years (or number of cases read, or whichever other measure) of experience.”

One problem with such argument is that observers with the same level of ex-
perience may perform very differently, according to observer’s talent, as shown in
Nodine, Kundel, Mello-Thoms ez al., 1999. Thus, by averaging them together one
is in fact misrepresenting performance at that level of experience. If, on the otber
hand, one uses only one observer with a given level of experience, then one is cer-
tainly risking representing that level with either the best or the worst performance,
which certainly is not an acceptable measure.

Which criterion can be used then to measure the performance of an ANN? Well,
certainly if one uses the same data set to test different ANNg, the one that has a
smnaller error is to be said to be the best. However, could one then go out and use
this same data set to test human observers, and then compare these results with the
ones from the ANN? The immediate answer is no, because human performance
varies greatly with the level of expertise, which involves both talent and training.
Thus, by saying that the ANN performed “better” than the human observers, one
is in fact saying that it performed better against those particular observers which
had a given level of talent and training. There are no guarantees, however, that as
the number of cases seen by the observers increases, their performance would stay
at the same level, and thus such a comparison is limited to that particular instant in
time. On the other hand, if the human observers perforied better than the ANN,
nothing could be said, especially if the human observers had seen a Jarger number
of cases than the ANN was trained with. One could say that the human observers in
this case were trained with a larger (and possibly broader) data set. If the humans
and the ANN had seen a similar number of cases, then one would have to be careful
with the conclusions drawn, because one would have to show that this number is
enough to generate human expertise (or to account for a decent training set for the
machine).

What can be said, then, about expertise of an artificial neural network? One
important point to consider initially is that, if all that constitutes expertise is some-
thing that can be computed, then there necessarily exists a set of rules that lead to
it, because every mathematical identity can be rewritten as expressions from first-
order logic (Bringsjord, 1997). Thus, if expertise is at all computable then ANNs
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or any other artificially intelligent system can conceptually be capable of realizing
the same type of expertisc as humans, and probably of achicving as good or even
better performance then human experts, because of their massive computational
capabilities. If on the other hand, as we propose, expertise has a component that is
not computable, such as the spontaneous generation of new concepts, then artifi-
cial systems cannot simulate that component, and their expertise will be different,
in kind, to that of the human expert.

Another important part of human expertise is creativity. Namely, the ability to
respond appropriately to the unknown, to derive a meaningful set of actions by
contrasting the novelty with what is known, is one of the halhmarks of the human
experts. In this way, creativity is another characteristic that separates the human
expert from the novices. In this context all three different types of creativity (Bo-
den, 1998) arc to be considercd, namely, the exploratory type, which involves the
generation of new ideas by the exploration of the knowledge domain; the combina-
torial type, which gencrates new ideas by creating new associations for old ideas;
and the transformational type, which involves transforming what is known to gen-
crate a concept never before conceived. By possessing one (or more) of these types
of creativity a human expert can not only further the knowledge in his/her domain
of expertisc but also derive a meaningful strategy once he/she is faced with an un-
known (or never before seen) aspect of the problem, and then learn from it (Palmer,
1997).

Intelligent systens have a great deal of difficulty dealing with the concept of
creativity. As pointed out elsewhere (Boden, 1996; 1998) only the cxploratory type
of creativity has been dealt with in Al systems, with a small degree of success.
The other two types rely heavily in the human associative memory, and most of ils
processes are, as of yet, not completely understood and thus cannot be replicated
in a network. As a conscquence of this, the intelligent systems that currently exist
cannot gencrate a new concept on their own, and when facing the unknown may
not react appropriately, because of their incapacity to adapt to the new situation.

Thus, as a summary, we can say that we believe that intelligent systems should
be more and more used to do things that people do poorly, because their capabilities
for massive amounts of computations is very helpful in some situations. On the
other hand, in tasks were people do well, the role of the expert system may be
more restricted, such as that of a tutor or a peer whose second opinion should be
{aken into account, but that probably should not be left alone to run the show.

19.7 Conclusions

In this chapter we described the natare of expertisc, particularly referring to
expertise in radiology. We showed, for example, that mammography expertise, as
measured by overall performance {area under the AFROC curve) is highly depen-
dent on the logarithm of the number of cascs read. Our recent study of expertise
in mammography (Nodine, Kundel, Mello-Thoms et al., 1999) also showed that
residents in training develop similar decision-making strategies, as measured by
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their use of decision confidence ratings, as expert mammographers. From a practi-
cal standpoint this suggests that resident training in mammography is effective in
providing a general framework for learning radiology reading skills. But residents
were inferior to experts in recognizing true breast lesions. We hypothesize that this
weakness is primarily attributable to the lack of fine-tuned visual-recognition skills
which are dependent on perceptual learing. Supporting the tuning of visual recog-
nition argument, Sowden, Davies, Roling (1998) have recently shown that massed
practice detecting calcifications in positive-contrast mammograms (bright target on
dark background) positively transfers to a new task in which the calcifications are
displayed in ncgative-contrast mammograms (dark target on bright background).
This suggests that perceptual learning improves perceptual sensitivity in the de-
tection of high-contrast targets. Massed practice was defined as a detection trial
followed immediately by feedback about the correctness of observer’s response.
This improvement in perceptual sensitivity occurred even though the amount of
massed practice was limited to 720 trials followed by a transfer test. The key to
improvement seems to be the feedback. The development of expertise in chess
playing, which draws on similar mental representations and optimization strategics
to those for radiology expertise, also supports the importance of massed practice
as the primarily change agent.

When we looked at the question of what is learned when reading medical im-
ages, we showed that acquired knowledge is translated into a variety of cognitive
skills and strategies. As expertise is acquired, search strategies become less exhaus-
tive and more probabilistically driven by enriched anatomic-pathologic schemas.
Visual recognition of potential targets becomes more accurate because of an expan-
sive image-reading repertoire that defines decision thresholds for normalcy. This
acts to fine-tune discrimination and generalization thus facilitating perceptual dif-
ferentiation of abnormalities.

We have proposed that expert systems possess a different kind of expertise
than human experts, for they are only able to generate one of the two components
of human expertise, namely, the computable part, called training. This by no means
hinders their utility, but care should be taken when comparing the performance of
an expert system to that of a human expert.

Most radiology expertise skills and strategies find representations in the three
models of information processing discussed, the perceptual approach, the cogni-
tive approach and the connectionist approach. Although cach of these approaches
deals with different representations of the same underlying system, they ultimately
rely on the same basic leaming pinciple about how the acquisition and process-
ing of information occurs. The essential role of experience in learning is to enrich
structured knowledge in order to facilitate radiographic interpretation

Finally, all the theorizing about how radiology expertise is acquired boils down
10 a very simple answer: Practice, which as we have defined it in this paper means
case-reading experience, enriched by feedback in the form of knowledge of results,
makes the structured knowledge perfect! This is not a very deep theory of learning,
but it seems to capture the essence of how expertise in radiology is acquired.
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